二项式定理求自然数幂和

由二项式定理展开得

\[(n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+1}kn+1
\]

那么,对于所有的\(n=1,2,3,\cdots\)累加得到

\[(n+1)^{k+1}-1=\binom{k+1}1\sum_{i=1}^ni^k+\binom{k+1}2\sum_{i=1}^ni^{k-1}+\cdots+\binom {k+1}k\sum_{i=1}^ni+n
\]

进一步得到

\[\sum_{i=1}^ni^k=\frac1{k+1}[(n+1)^{k+1}-(\binom{k+1}2\sum_{i=1}^ni^{k-1}+\cdots+\binom {k+1}k\sum_{i=1}^ni+n+1)]
\]

计\(S(n,k)=\sum_{i=1}^ni^k\),可以得到

\[S(n,k)=\frac1{k+1}[(n+1)^{k+1}-(\binom{k+1}2S(n,k-1)+\cdots+\binom {k+1}kS(n,1)+n+1)]
\]

当\(k==1\),有\(S(n,1)=\frac{n\cdot(n+1)}{2}\)。

加入记忆化即可。

伯努利数

\[\sum_{i=1}^ni^k=\frac{1}{k+1}\sum_{i=1}^{k+1}\binom {k+1}iB_{k+1-i}(n+1)^i
\]

伯努利数满足\(B_0=1\),且有

\[\sum_{k=0}^n\binom{n+1}kB_k=0
\]

那么有

\[B_n=-\frac1{n+1}(\binom{n+1}0B_0+\binom{n+1}1B_1+\dots+\binom{n+1}{n-1}B_{n-1})
\]

这样就可以\(O(n^2)\)预处理出伯努利数。

还可以对\(B_i\)构建指数型生成函数

\[B(x)=\sum_{i=0}^\infty \frac{B_i}{i!}x^i
\]

经过我也不懂得化简得到

\[\begin{split}
B(x)=\frac{x}{e^x-1}\\
B[x]=ifac[x+1]
\end{split}
\]

可以利用多项式求逆在\(O(n\log n)\)计算伯努利数。

例题 51nod 1228 序列求和

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=10005,K=2005,mod=1e9+7;
using namespace std;
inline LL Getint(){register LL x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int inv[N],fac[N],ifac[N],B[N];
int C(int n,int m){
if(n<m)return 0;
return (LL)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int S(LL n,int k){
int ret=0;
LL ori=(n+1)%mod,fac=ori;
for(int i=1;i<=k+1;i++,fac=(LL)fac*ori%mod)
ret=(ret+(LL)C(k+1,i)*B[k+1-i]%mod*fac)%mod;
return (LL)(ret+mod)%mod*inv[k+1]%mod;
}
int main(){
inv[1]=fac[0]=ifac[0]=1;
for(int i=2;i<=K;i++)inv[i]=(LL)inv[mod%i]*(mod-mod/i)%mod;
for(int i=1;i<=K;i++)fac[i]=(LL)fac[i-1]*i%mod;
for(int i=1;i<=K;i++)ifac[i]=(LL)ifac[i-1]*inv[i]%mod;
B[0]=1;
for(int i=1;i<=K;i++){
for(int j=0;j<i;j++)
B[i]=(B[i]-(LL)B[j]*C(i+1,j))%mod;
B[i]=(LL)B[i]*inv[i+1]%mod;
}
int T=Getint();
while(T--){
LL n=Getint(),k=Getint();
cout<<S(n,k)<<'\n';
}
return 0;
}

自然数幂和&伯努利数(Bernoulli)的更多相关文章

  1. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  2. 51Nod - 1228 序列求和 (自然数幂和+伯努利数)

    https://vjudge.net/problem/51Nod-1228 Description T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k, ...

  3. Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )

    题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 :  题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...

  4. 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)

    [题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...

  5. 51Node1228序列求和 ——自然数幂和模板&&伯努利数

    伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...

  6. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  7. 51nod1228 序列求和(自然数幂和)

    与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...

  8. 洛谷P5437/5442 约定(概率期望,拉格朗日插值,自然数幂)

    题目大意:$n$ 个点的完全图,点 $i$ 和点 $j$ 的边权为 $(i+j)^k$.随机一个生成树,问这个生成树边权和的期望对 $998244353$ 取模的值. 对于P5437:$1\le n\ ...

  9. 求自然数幂和 B - The Sum of the k-th Powers CodeForces - 622F

    题解: 很多方法 斯特林数推导略麻烦但是不依赖于模数 代码: 拉格朗日插值 由于可以证明这是个K+1次多项式于是可以直接用插值 #include <bits/stdc++.h> using ...

随机推荐

  1. 配置ssh免密登录问题

    有小伙伴的系统需要做免密登录.配置比较简单,ssh-keygen然后生成authorized_keys 文件即可. 但是配置好之后,修改相应用户的家目录权限后,则免密登录就失效了. 经过试验,发现家目 ...

  2. CSS和jQuery分别实现图片无缝滚动效果

    一.效果图 二.使用CSS实现 <!DOCTYPE html> <html> <head> <meta charset="utf-8"&g ...

  3. CXF异常:No operation was found with the name

    https://blog.csdn.net/qq_18675693/article/details/52134805 不同包下面,别忘了namespace最后要加“/”

  4. shell同时输出多行信息

  5. 在Ubuntu下安装source Insight

    在ubuntu中,安装windows程序用wine,然后用wine安装windows软件即可. 安装wine sudo apt-get install wine 下载sourceinsight的exe ...

  6. Tips using Manjaro

    Set swappiness value The default swappiness value is set 60 as you can check it via the following co ...

  7. 利用Process类创建多个子进程对象执行任务,主进程负责调度

    import time from multiprocessing import Process def run1(): for i in range(5): print("sunck is ...

  8. php自动生成不重复的id

    PHP uniqid()函数可用于生成不重复的唯一标识符,该函数基于微秒级当前时间戳.在高并发或者间隔时长极短(如循环代码)的情况下,会出现大量重复数据.即使使用了第二个参数,也会重复,最好的方案是结 ...

  9. 启动AutoCAD时自动加载.NET开发的DLL

    程序组织,建立名为*.bundle的文件夹,创建Contents子文件夹,并将dll,ico等文件放进Contents中,在*.bundle中创建PackageContents.xml文件,内容如下: ...

  10. php-数据库-分页类-上传类

    config.ini.php <?php header("content-type:text/html;charset=utf-8"); //项目的根目录 define(&q ...