tcp为什么要三次握手,四次挥手
tcp为什么要三次握手,tcp为什么可靠。
为什么不能两次握手:(防止已失效的连接请求又传送到服务器端,因而产生错误)
假设改为两次握手,client端发送的一个连接请求在服务器滞留了,这个连接请求是无效的,client已经是closed的状态了,而服务器认为client想要建立
一个新的连接,于是向client发送确认报文段,而client端是closed状态,无论收到什么报文都会丢弃。而如果是两次握手的话,此时就已经建立连接了。
服务器此时会一直等到client端发来数据,这样就浪费掉很多server端的资源。
(校注:此时因为client没有发起建立连接请求,所以client处于CLOSED状态,接受到任何包都会丢弃,谢希仁举的例子就是这种场景。但是如果服务器发送对这个延误的旧连接报文的确认的同时,客户端调用connect函数发起了连接,就会使客户端进入SYN_SEND状态,当服务器那个对延误旧连接报文的确认传到客户端时,因为客户端已经处于SYN_SEND状态,所以就会使客户端进入ESTABLISHED状态,此时服务器端反而丢弃了这个重复的通过connect函数发送的SYN包,见第三个图。而连接建立之后,发送包由于SEQ是以被丢弃的SYN包的序号为准,而服务器接收序号是以那个延误旧连接SYN报文序号为准,导致服务器丢弃后续发送的数据包)
三次握手的最主要目的是保证连接是双工的,可靠更多的是通过重传机制来保证的。
TCP可靠传输的实现:
TCP 连接的每一端都必须设有两个窗口——一个发送窗口和一个接收窗口。TCP 的可靠传输机制用字节的序号进行控制。TCP 所有的确认都是基于序号而不是基于报文段。
发送过的数据未收到确认之前必须保留,以便超时重传时使用。发送窗口没收到确认不动,和收到新的确认后前移。
发送缓存用来暂时存放: 发送应用程序传送给发送方 TCP 准备发送的数据;TCP 已发送出但尚未收到确认的数据。
接收缓存用来暂时存放:按序到达的、但尚未被接收应用程序读取的数据; 不按序到达的数据。
必须强调三点:
1> A 的发送窗口并不总是和 B 的接收窗口一样大(因为有一定的时间滞后)。
2> TCP 标准没有规定对不按序到达的数据应如何处理。通常是先临时存放在接收窗口中,等到字节流中所缺少的字节收到后,再按序交付上层的应用进程。
3> TCP 要求接收方必须有累积确认的功能,这样可以减小传输开销(累积确认:一般地讲,如果发送方发了包1,包2,包3,包4;接受方成功收到包1,包2,包3。
那么接受方可以发回一个确认包,序号为4(4表示期望下一个收到的包的序号;当然你约定好用3表示也可以),那么发送方就知道包1到包3都发送接收成功,必要时重发包4。一个确认包确认了累积到某一序号的所有包。而不是对没个序号都发确认包。)
- TCP报文格式
(1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
(2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。
(3)标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:
(A)URG:紧急指针(urgent pointer)有效。
(B)ACK:确认序号有效。
(C)PSH:接收方应该尽快将这个报文交给应用层。
(D)RST:重置连接。
(E)SYN:发起一个新连接。
(F)FIN:释放一个连接。
需要注意的是:
(A)不要将确认序号Ack与标志位中的ACK搞混了。
(B)确认方Ack=发起方Req+1,两端配对。
- 三次握手
TCP三次即建立TCP连接,指建立一个TCP连接时,需要客户端服务端总共发送3 个包以确认连接的建立。在socket编程中,这一过程中由客户端执行connect来触发,流程如下:
(1)第一次握手:Client将标志位SYN置为1(表示要发起一个连接),随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。
(2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。
(3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。
SYN攻击:
在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:
#netstat -nap | grep SYN_RECV
ddos攻击:
分布式拒绝服务(DDoS:Distributed Denial of Service)攻击指借助于客户/服务器技术,将多个计算机联合起来作为攻击平台,对一个或多个目标发动DDoS攻击,从而成倍地提高拒绝服务攻击的威力。通常,攻击者使用一个偷窃帐号将DDoS主控程序安装在一个计算机上,在一个设定的时间主控程序将与大量代理程序通讯,代理程序已经被安装在网络上的许多计算机上。代理程序收到指令时就发动攻击。利用客户/服务器技术,主控程序能在几秒钟内激活成百上千次代理程序的运行。
- 四次挥手
所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:
由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。
(1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
(2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
(3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
(4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。
为什么需要TIME_WAIT
TIMEWAIT状态也称为2MSL等待状态。
1)为实现TCP这种全双工(full-duplex)连接的可靠释放
这样可让TCP再次发送最后的ACK以防这个ACK丢失(另一端超时并重发最后的FIN)。这种2MSL等待的另一个结果是这个TCP连接在2MSL等待期间,定义这个连接的插口(客户的IP地址和端口号,服务器的IP地址和端口号)不能再被使用。这个连接只能在2MSL结束后才能再被使用。
2)为使旧的数据包在网络因过期而消失
每个具体TCP实现必须选择一个报文段最大生存时间MSL(Maximum Segment Lifetime)。它是任何报文段被丢弃前在网络内的最长时间。
为什么建立连接是三次握手,而关闭连接却是四次挥手呢?
这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,我们也未必全部数据都发送给对方了,所以我们不可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,我们的ACK和FIN一般都会分开发送。
tcp为什么要三次握手,四次挥手的更多相关文章
- python摸爬滚打之----tcp协议的三次握手四次挥手
TCP协议的三次握手, 四次挥手 三次握手过程 1, 服务器时刻准备接受客户端进程的连接请求, 此时服务器就进入了LISTEN(监听)状态; 2, 客户端进程然后向服务器发出连接请求报文, 之后客户端 ...
- Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手)
Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手) 一丶CS/BS 架构 C/S: 客户端/服务器 定义: ...
- TCP/IP报文 三次握手 四次挥手
1.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图:图1 TCP报文格式 上图中有几个字段需要重点介绍下: (1)序号:Seq序 ...
- 关于TCP传输的三次握手四次挥手策略
简单小总结: 一般为了能够准确无误地把数据送达目标处,TCP协议采用了三次握手策略.用TCP协议把数据包送出去后,TCP不会对传送后的情况置之不理,它一定会向对方确认是否成功送达. 注:握手过程中使用 ...
- TCP传输的三次握手四次挥手策略
为了准确无误地数据送达目标处,TCP协议采用了三次握手策略.用TCP协议把数据包送出去后,TCP不会对传送后的情况置之不理,它一定会向对方确认是否成功送达.握手中使用了TCP的标志:SYN和ACK 发 ...
- tcp协议:三次握手四次挥手详解-转
https://www.cnblogs.com/welan/p/9925119.html
- tcp/ip原理/三次握手/四次挥手
@ tcp/ip原理 1.1 tcp/ip三次握手 1.1.1 建立过程说明 a) 由主机A发送建立TCP连接的请求报文, 其中报文中包含seq序列号, 是由发送端随机生成的, 并且还将报文中SY ...
- OSI七层协议&TCP协议(三次握手四次挥手)
今日内容 python 基础回顾 软件开发架构 网络理论前戏 OSI 七层协议(五层) TCP协议 三次握手与四次挥手 UDP协议 内容详细 一.python 基础回顾 1.基本数据类型 整型 int ...
- TCP/IP,三次握手四次挥手,TCP/UDP , HTTP/HTTPS
internet:通用名词,由多个计算机网络组成的网络,网络间的通信协议是任意的 Internet:专用名词,当前全球最大的开放计算机网络,采用TCP/IP协议族作为通信的规则.www万维网是广泛应用 ...
- TCP连接为什么三次握手四次挥手
前几天面试某电商被问住了,问的很细,我就说了说连接过程,必然凉凉.在csdn上找了一篇很详细的博客.https://blog.csdn.net/hyg0811/article/details/1023 ...
随机推荐
- USACO 2008 January Silver Telephone Lines /// 二分最短路 邻接表dijkstra oj22924
题目大意: 一共有N (1 ≤ N ≤ 1,000)个电线杆,有P P (1 ≤ P ≤ 10,000)对电线杆是可以连接的, 用几条线连接在一起的电线杆之间都可相互通信,现在想要使得电线杆1和电线杆 ...
- springboot整合thymeleaf手动渲染
Thymeleaf手动渲染 为提高页面访问速度,可缓存html页面,客户端请求从缓存获取,获取不到再手动渲染 在spring4下 @Autowired ThymeleafViewResolver th ...
- qt5下面中文显示异常
在源文件中插入# pragma execution_character_set("utf-8")即可
- Spark RDD基本操作
- 2019 Multi-University Training Contest 3 B 支配树
题目传送门 题意:给出衣服有向无环图(DAG),,定义出度为0的点为中心城市,每次询问给出两个点,求破坏任意一个城市,使得这两个点至少有一个点无法到达中心城市,求方案数. 思路:首先建立反向图,将城市 ...
- 前端常用的库和实用技术之JavaScript面向切面编程
Aspect Oriented Programming(AOP)面向切面编程是一个比较热门的话题. AOP主要实现的目的是针对业务处理过程中的切面进行提取,它所面对的是处理过程 中的某个步骤或阶段,以 ...
- openwrt_ipsec_function.sh 分析
#!/bin/sh # # Copyright (C) Vitaly Protsko <villy@sft.ru> errno= # get_fieldval gate src " ...
- Cut the Sequence
Cut the Sequence 有一个长度为n的序列\(\{a_i\}\),现在求将其划分成若干个区间,并保证每个区间的和不超过m的情况下,每个区间的最大值的和的最小值,\(0 < N ≤ 1 ...
- window 系统上传文件到linux 系统出现dos 格式换行符
Windows里的文件在Unix/Mac下打开的话,在每行的结尾可能会多出一个^M符号,Unix/Mac系统下的文件在Windows里打开的话,所有文字会变成一行,所以为了避免这种情况的发生,我们可以 ...
- BeanPostProcessor原理--使用讲解
<Spring源码解析>笔记 BeanPostProcessor原理学习 在学习BeanPostProcessor的原理学习完之后,对Spring如何使用充满好奇,尝试使用例子进行理解,以 ...