废话不多说,直接上题:


SP7579 YOKOF - Power Calculus

题意翻译

(略过没有营养的题干)

题目大意: 给出正整数n,若只能使用乘法或除法,输出使x经过运算(自己乘或除自己,以及乘或除运算过程中产生的中间结果)变成x^n的最少步数

输入格式: 若干行数据,每行一个正整数n,数据以单独成行的0结束

输出格式: 若干行数据,对应每行输入的n所需的步数

题目描述

Starting with x and repeatedly multiplying by x, we can compute x ^{31}31 with thirty multiplications:

x ^{2}2 = x * xx ^{3}3 = x ^{2}2 * xx ^{4}4 = x ^{3}3 * x, ... , x ^{31}31 = x ^{30}30 * x.

The operation of squaring can appreciably shorten the sequence of multiplications. The following is a way to compute x ^{31}31 with eight multiplications:

x ^{2}2 = x * xx ^{3}3 = x ^{2}2 * xx ^{6}6 = x ^{3}3 * x ^{3}3 , x ^{7}7 = x ^{6}6 * xx ^{14}14 = x ^{7}7 * x ^{7}7 ,
x ^{15}15 = x ^{14}14 * xx ^{30}30 = x ^{15}15 * x ^{15}15 , x ^{31}31 = x ^{30}30 * x.

This is not the shortest sequence of multiplications to compute x ^{31}31 . There are many ways with only seven multiplications. The following is one of them:

x ^{2}2 = x * xx ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{10}10 = x ^{8}8 * x ^{2}2 ,
x ^{20}20 = x ^{10}10 * x ^{10}10 , x ^{30}30 = x ^{20}20 * x ^{10}10 , x ^{31}31 = x ^{30}30 * x.

There however is no way to compute x ^{31}31 with fewer multiplications. Thus this is one of the most efficient ways to compute x ^{31}31 only by multiplications.

If division is also available, we can find a shorter sequence of operations. It is possible to compute x ^{31}31 with six operations (five multiplications and one division):

x ^{2}2 = x * xx ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{16}16 = x ^{8}8 * x ^{8}8 , x ^{32}32 = x ^{16}16 * x ^{16}16 , x ^{31}31 = x ^{32}32÷ x.

This is one of the most efficient ways to compute x ^{31}31 if a division is as fast as a multiplication.

Your mission is to write a program to find the least number of operations to compute x ^{n}n by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence of operations should be x to a positive integer's power. In other words, x ^{-3}−3 , for example, should never appear.

输入格式

The input is a sequence of one or more lines each containing a single integer nn is positive and less than or equal to 1000. The end of the input is indicated by a zero.

输出格式

Your program should print the least total number of multiplications and divisions required to compute x ^{n}n starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

输入输出样例

输入 #1复制

1
31
70
91
473
512
811
953
0
输出 #1复制

 
0
6
8
9
11
9
13
12

  这道题有点尴尬,大多都是英语,幸好浏览器是可以翻译的。

  

  先来确定算法。

  这道题先来思考用什么算法?似乎没什么特殊的算法,那么就只能搜索了。

  是深搜呢?还是广搜呢?广搜没前途,状态不好记录,深搜又控制不住,一条路走到黑。

  其实这道题直接迭代加深搜索就可以了。

  什么是迭代加深搜索?就是深搜设定上一个搜索的边界,逐步加深这个边界,这样每次会限制其搜索的深度,就不会一条路走到黑了。  

  但是这是依旧相当的暴力啊!!!

  小编试了一下,连样例数据都卡到爆了,所以必须进一步优化,这里使用剪枝优化。

  如果当前的指数自乘剩下的次数之后仍然比n小,那么我们就一定会果断舍弃,这就是剪枝的内容。

  代码如下:

 #include<iostream>
using namespace std;
int num[],n,idt;//用num来存储已经创造过的可以用于计算的数,idt是限制的深度
bool dfs(int step,int now)//step是当前用了多少次运算,now是当前指数
{
if(now<=||step>idt||now<<(idt-step)<n) return false;//判断一定不能成功的条件和剪枝
if(now<<(idt-step)==n) return true;//剪枝
if(now==n) return true;//如果正确,那么就返回
num[step]=now;//存储一下这个指数
for(int i=;i<=step;i++)
{
if(dfs(step+,now+num[i])) return true;//乘
if(dfs(step+,now-num[i])) return true;//除
}
return false;//不成功一定要最后返回false
}
int main()
{
while()
{
cin>>n;
if(n==) break;
for(idt=;;idt++)//从0开始枚举深度
if(dfs(,)==true) break;//发现可以就结束循环
cout<<idt<<endl;
}
return ;
}  

【算法•日更•第三十九期】迭代加深搜索:洛谷SP7579 YOKOF - Power Calculus 题解的更多相关文章

  1. 【算法•日更•第三十五期】FF算法优化:EK算法

    ▎写在前面 FF算法传送门 之前我们已经学过了FF算法(全称Ford-Fulkerson算法)来找最大流,但是这种算法仍有诸多不对的地方. 其实这种算法存在着严重的效率的问题,请看下面的图: 以这个图 ...

  2. 【算法•日更•第三十期】区间动态规划:洛谷P4170 [CQOI2007]涂色题解

    废话不多说,直接上题:  P4170 [CQOI2007]涂色 题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符 ...

  3. 【算法•日更•第五十四期】知识扫盲:什么是operator?

    ▎前言 这个东西和迭代器长的很像,但是比迭代器常见的多. 今天就来浅谈operator. ▎定义 operator是C#.C++和pascal的关键字,它和运算符一起使用,表示一个运算符函数,理解时应 ...

  4. 【算法•日更•第三十一期】KMP算法

    ▎前言 这次要讲的HMP算法KMP算法很简单,是用于处理字符串的,之前一直以为很难,其实也不过如此(说白了就是优化一下暴力). ▎处理的问题 通常处理的问题是这样的:给定两个字符串s1和s2,其中s1 ...

  5. 【算法•日更•第三十二期】教你用出windows体验的Linux

    ▎前言 小编昨天闲的不行,就装了一个linux系统,linux的发行版很多,小编认为ubuntu很好用,于是就在使用ubuntu. 没错,我现在就在使用ubuntu来写博客. 刚才还装了一个QQ,不过 ...

  6. 【算法•日更•第三十七期】A*寻路算法

    ▎写在前面 这是一种搜索算法,小编以前总是念成A乘寻路算法,没想到一直念错. 请大家都念成A星寻路算法,不要像小编一样丢人了. ▎A*寻路算法 ☞『引入』 相信大家都或多或少的玩过一些游戏吧,那么游戏 ...

  7. 【算法•日更•第五十期】二分图(km算法)

    ▎前言 戳开这个链接看看,惊不惊喜,意不意外?传送门. 没想到我的博客竟然被别人据为己有了,还没办法投诉. 这年头写个博客太难了~~~ 之前小编写过了二分图的一些基础知识和匈牙利算法,今天来讲一讲km ...

  8. 【算法•日更•第四十二期】离散傅里叶变换(DFT)

    ▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式, ...

  9. 【算法•日更•第四十三期】QQ for linux

    废话不多说,直接看一张图: 没错,这是QQ,但是这有什么稀奇的?但是在Linux上使用QQ就很稀奇了. 众所周知,腾讯早就已经对Linux下的QQ和微信停止了服务,即便是网页版也不能用,通信这一直是小 ...

随机推荐

  1. 手动造轮子——为Ocelot集成Nacos注册中心

    前言     近期在看博客的时候或者在群里看聊天的时候,发现很多都提到了Ocelot网关的问题.我之前也研究过一点,网关本身是一种通用的解决方案,主要的工作就是拦截请求统一处理,比如认证.授权.熔断. ...

  2. eclipse IDE usage of my own and tutorials link list

    设置 字符集 Eclipse 修改字符集 默认情况下 Eclipse 字符集为 GBK,但现在很多项目采用的是 UTF-8,这是我们就需要设置我们的 Eclipse 开发环境字符集为 UTF-8, 设 ...

  3. 轻松应对并发问题,Newbe.Claptrap 框架中 State 和 Event 应该如何理解?

    Newbe.Claptrap 框架中 State 和 Event 应该如何理解?最近整理了一下项目的术语表.今天就谈谈什么是 Event 和 State. Newbe.Claptrap 是一个用于轻松 ...

  4. python数据处理书pdf版本|内附网盘链接直接提取|

    Python数据处理采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.Excel.XML.J ...

  5. PHP 中的字符串变量

    PHP 字符串变量 字符串变量用于存储并处理文本. PHP 中的字符串变量 字符串变量用于包含有字符的值. 在创建字符串之后,我们就可以对它进行操作了.您可以直接在函数中使用字符串,或者把它存储在变量 ...

  6. P2569 [SCOI2010]股票交易 dp 单调队列优化

    LINK:股票交易 题目确实不算难 但是坑点挺多 关于初值的处理问题我就wa了两次. 所以来谢罪. 由于在手中的邮票的数量存在限制 且每次买入卖出也有限制. 必然要多开一维来存每天的邮票数量. 那么容 ...

  7. rabbitMQ安装问题记录

    参考链接: rabbitmq国内镜像地址:https://www.newbe.pro/Mirrors/Mirrors-RabbitMQ/ https://www.zhihu.com/question/ ...

  8. JS时间和时间戳的转换

    时间转为时间戳 timeToTimestamp(time){ let timestamp = Date.parse(time) return timestamp; } 时间戳转为本地时间 timest ...

  9. Linux的VMWare中Centos7文件系统挂载和开启网卡及简单命令

    一.路径 挂载磁盘/etc/fastab  开启网卡 vi .bash_profile              ---更改PATH环境变量 可设置 mysql提示符 cd  /etc/yum.rep ...

  10. python 操作元组 列表===python中三大宝刀(字典已经再上一遍 说过)

    字典俗称,世界有多大就能装多大 列表俗称,你们决定 元组俗称,可远观而不可亵玩焉 列表的相关操作a=['1','2','3','5','6','7']# print(a[0])# print(a[0: ...