题意:给定一个仅含有AB的字母串

   如果i有一个B j有一个A 且j>i 会对F(j-i)产生贡献 求出所有发Fi

题解:好像是很裸的FFT B的分布可以看作一个多项式 同理A也可以

   然后把B的位置翻转一下 就搞成了卷积的形式

   设f为B的位置函数 如果si = B, fi = 1否则fi = 0. 设g为A的位置函数

\[F(i)= \sum_{j = 1}^{n - i + 1} f(j)*g(i+j)
\]
\[把f翻转一下
\]
\[F(i)= \sum_{j = 1}^{n - i + 1} f(n - j + 1)*g(i+j) = F(n + 1 + i)
\]
#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0); struct Complex {
double x, y;
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator + (const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator - (const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator * (const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
}; void change(Complex y[], int len) {
int i, j, k;
for(i = 1, j = len / 2; i < len - 1; i++) {
if(i < j) swap(y[i], y[j]);
k = len / 2;
while(j >= k) {
j -= k;
k /= 2;
}
if(j < k) j += k;
}
} void fft(Complex y[], int len, int on) {
change(y, len);
for(int h = 2; h <= len; h <<= 1) {
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for(int j = 0; j < len; j += h) {
Complex w(1, 0);
for(int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
} if(on == -1)
for(int i = 0; i < len; i++)
y[i].x /= len;
} char s[1000005];
Complex x1[4000005], x2[4000005];
int main() {
scanf("%s", s + 1);
int n = strlen(s + 1);
for(int i = 1; i <= n; i++) {
if(s[i] == 'A') {
x1[i] = Complex(1.0, 0);
x2[n - i + 1] = Complex(0, 0);
} else if(s[i] == 'B') {
x1[i] = Complex(0, 0);
x2[n - i + 1] = Complex(1.0, 0);
}
}
int len = 1;
while(len <= n + n) len <<= 1;
fft(x1, len, 1);
fft(x2, len, 1);
for(int i = 0; i <= len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1);
for(int i = n + 2; i <= n + n; i++) printf("%d\n", (int)(x1[i].x + 0.5));
return 0;
}

gym101002K. Inversions (FFT)的更多相关文章

  1. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...

  2. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  3. 为什么FFT时域补0后,经FFT变换就是频域进行内插?

    应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...

  4. FFT NNT

    算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...

  5. CC countari & 分块+FFT

    题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...

  6. ECF R9(632E) & FFT

    Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...

  7. fft练习

    数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...

  8. FFT时域与频域的关系,以及采样速率与采样点的影响

    首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...

  9. 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT

    前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...

随机推荐

  1. 改进你的c#代码的5个技巧(三)

    本文完全独立于前两篇文章.如果你喜欢它们,我希望你也会喜欢这个.在上一篇文章中,我展示了哪种方法更快,并比较了代码的执行速度.在本文中,我将展示不同代码片段的内存消耗情况.为了显示内存映射和分配图,我 ...

  2. 【JavaWeb】jQuery 基础

    jQuery 基础 介绍 顾名思义,它是 JavaScript 和 查询,是辅助 JavaScript 开发的类库. 它的核心思想是 write less, do more. 所以它实现了很多浏览器的 ...

  3. python学习笔记 | selenium各浏览器驱动下载地址

    Chrome http://chromedriver.storage.googleapis.com/index.html 不同的Chrome的版本对应的chromedriver.exe 版本也不一样, ...

  4. SQL查找连续出现的数字

    基于Oracle: 题:编写一个 SQL 查询,查找所有至少连续出现三次的数字. +----+-----+ | Id | Num | +----+-----+ | 1 | 1 | | 2 | 1 | ...

  5. 经常使用的Sublime Text 快捷键

    最常用的 Sublime快捷键:

  6. mysql中更改字段属性实际上都做了哪些操作

     mysql> set profiling=1; Query OK, 0 rows affected (0.00 sec) mysql> alter table test modify n ...

  7. 【Linux】salt的cmd.script命令介绍

    salt是一个很棒的自动化运维工具之一,常用的有cmd.run,今天介绍的是cmd.script 其实一眼就能看出这个命令是执行脚本的命令 具体操作如下: 1.将/etc/salt/master中的 ...

  8. Flink源码剖析:Jar包任务提交流程

    Flink基于用户程序生成JobGraph,提交到集群进行分布式部署运行.本篇从源码角度讲解一下Flink Jar包是如何被提交到集群的.(本文源码基于Flink 1.11.3) 1 Flink ru ...

  9. qt for webassembly环境搭建图文教程

    一.前言 从Qt5.14开始,官方的在线安装提供了qt for webassembly构建套件,这对很多小白来说绝对是个好消息,也绝对是个好东西,好消息是不用再去交叉编译自己生成qt for weba ...

  10. CodeMonkey少儿编程第3章 times循环

    目标 了解程序由哪三种基本的结构组成 了解循环的概念 掌握times的结构与用法 三种基本结构 计算机程序由三种最基本的结构组成,它们分别是: 顺序结构 循环结构 选择结构 千万不要被这些陌生的术语给 ...