如何用Flink把数据sink到kafka多个不同(成百上千)topic中
需求与场景
上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现状就是如此庞大的数据集中在一个topic里)。这就需要根据一些业务规则把这个大数据量的topic数据分发到多个(成百上千)topic中,以便下游的多个job去消费自己topic的数据,这样上下游之间的耦合性就降低了,也让下游的job轻松了很多,下游的job只处理属于自己的数据,避免成百上千的job都去消费那个大数据量的topic。数据被分发之后再让下游job去处理 对网络带宽、程序性能、算法复杂性都有好处。
这样一来就需要 这么一个分发程序,把上下游job连接起来。
分析与思考
Flink中有connect算子,可以连接2个流,在这里1个就是上面数据量庞大的业务数据流,另外1个就是规则流(或者叫做配置流,也就是决定根据什么样的规则分发业务数据)
但是问题来了,根据规则分发好了,如何把这些数据sink到kafka多个(成百上千)topic中呢?
首先想到的就是添加多个sink,每分发到一个topic,就多添加1个addSink操作,这对于如果只是分发到2、3个topic适用的,我看了一下项目中有时候需要把数据sink到2个topic中,同事中就有人添加了2个sink,完全ok,但是在这里要分发到几十个、成百上千个topic,就肯定不现实了,不需要解释吧。
sink到kafka中,其实本质上就是用
KafkaProducer
往kafka写数据,那么不知道有没有想起来,用KafkaProducer
写数据的时候api是怎样的,public Future<RecordMetadata> send(ProducerRecord<K, V> record);
显然这里需要一个ProducerRecord对象,再看如何实例化ProducerRecord
对象,public ProducerRecord(String topic, V value)
, 也就是说每一个message都指定topic,标明是写到哪一个topic的,而不必说 我们要写入10个不同的topic中,我们就一定new 10 个 KafkaProducer到上面这一步,如果懂的人就会豁然开朗了,我本来想着可能需要稍微改改flink-connector-kafka实现,让我惊喜的是flink-connector-kafka已经留有了接口,只要实现
KeyedSerializationSchema
这个接口的String getTargetTopic(T element);
就行
代码实现
先看一下KeyedSerializationSchema
接口的定义,我们知道kafka中存储的都是byte[],所以由我们自定义序列化key、value
/**
* The serialization schema describes how to turn a data object into a different serialized
* representation. Most data sinks (for example Apache Kafka) require the data to be handed
* to them in a specific format (for example as byte strings).
*
* @param <T> The type to be serialized.
*/
@PublicEvolving
public interface KeyedSerializationSchema<T> extends Serializable {
/**
* Serializes the key of the incoming element to a byte array
* This method might return null if no key is available.
*
* @param element The incoming element to be serialized
* @return the key of the element as a byte array
*/
byte[] serializeKey(T element);
/**
* Serializes the value of the incoming element to a byte array.
*
* @param element The incoming element to be serialized
* @return the value of the element as a byte array
*/
byte[] serializeValue(T element);
/**
* Optional method to determine the target topic for the element.
*
* @param element Incoming element to determine the target topic from
* @return null or the target topic
*/
String getTargetTopic(T element);
}
重点来了,实现这个String getTargetTopic(T element);
就可以决定这个message写入到哪个topic里。
于是 我们可以这么做,拿到业务数据(我们用的是json格式),然后根据规则分发的时候,就在这条json格式的业务数据里添加一个写到哪个topic的字段,比如说叫topicKey
,
然后我们实现getTargetTopic()
方法的时候,从业务数据中取出topicKey
字段就行了。
实现如下(这里我是用scala写的,java类似):
class OverridingTopicSchema extends KeyedSerializationSchema[Map[String, Any]] {
override def serializeKey(element: Map[String, Any]): Array[Byte] = null
override def serializeValue(element: Map[String, Any]): Array[Byte] = JsonTool.encode(element) //这里用JsonTool指代json序列化的工具类
/**
* kafka message value 根据 topicKey字段 决定 往哪个topic写
* @param element
* @return
*/
override def getTargetTopic(element: Map[String, Any]): String = {
if (element != null && element.contains(“topicKey”)) {
element(“topicKey”).toString
} else null
}
}
之后在new FlinkKafkaProducer
对象的时候 把上面我们实现的这个OverridingTopicSchema
传进去就行了。
public FlinkKafkaProducer(
String defaultTopicId, // 如果message没有指定写往哪个topic,就写入这个默认的topic
KeyedSerializationSchema<IN> serializationSchema,//传入我们自定义的OverridingTopicSchema
Properties producerConfig,
Optional<FlinkKafkaPartitioner<IN>> customPartitioner,
FlinkKafkaProducer.Semantic semantic,
int kafkaProducersPoolSize) {
//....
}
至此,我们只需要把上面new 出来的FlinkKafkaProducer
添加到addSink中就能实现把数据sink到kafka多个(成百上千)topic中。
下面简单追踪一下FlinkKafkaProducer
源码,看看flink-connector-kafka是如何将我们自定义的KeyedSerializationSchema
作用于最终的ProducerRecord
/** 这个是用户可自定义的序列化实现
* (Serializable) SerializationSchema for turning objects used with Flink into.
* byte[] for Kafka.
*/
private final KeyedSerializationSchema<IN> schema;
@Override
public void invoke(FlinkKafkaProducer.KafkaTransactionState transaction, IN next, Context context) throws FlinkKafkaException {
checkErroneous();
// 调用我们自己的实现的schema序列化message中的key
byte[] serializedKey = schema.serializeKey(next);
// 调用我们自己的实现的schema序列化message中的value
byte[] serializedValue = schema.serializeValue(next);
// 调用我们自己的实现的schema取出写往哪个topic
String targetTopic = schema.getTargetTopic(next);
if (targetTopic == null) {
// 如果没有指定写往哪个topic,就写往默认的topic
// 这个默认的topic是我们new FlinkKafkaProducer时候作为第一个构造参数传入(见上面的注释)
targetTopic = defaultTopicId;
}
Long timestamp = null;
if (this.writeTimestampToKafka) {
timestamp = context.timestamp();
}
ProducerRecord<byte[], byte[]> record;
int[] partitions = topicPartitionsMap.get(targetTopic);
if (null == partitions) {
partitions = getPartitionsByTopic(targetTopic, transaction.producer);
topicPartitionsMap.put(targetTopic, partitions);
}
if (flinkKafkaPartitioner != null) {
record = new ProducerRecord<>(
targetTopic, // 这里看到了我们上面一开始分析的ProducerRecord
flinkKafkaPartitioner.partition(next, serializedKey, serializedValue, targetTopic, partitions),
timestamp,
serializedKey,
serializedValue);
} else {
record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);
}
pendingRecords.incrementAndGet();
transaction.producer.send(record, callback);
}
如何用Flink把数据sink到kafka多个不同(成百上千)topic中的更多相关文章
- 如何用Flink把数据sink到kafka多个(成百上千)topic中
需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现 ...
- Flume下读取kafka数据后再打把数据输出到kafka,利用拦截器解决topic覆盖问题
1:如果在一个Flume Agent中同时使用Kafka Source和Kafka Sink来处理events,便会遇到Kafka Topic覆盖问题,具体表现为,Kafka Source可以正常从指 ...
- DataPipeline丨构建实时数据集成平台时,在技术选型上的考量点
文 | 陈肃 DataPipeline CTO 随着企业应用复杂性的上升和微服务架构的流行,数据正变得越来越以应用为中心. 服务之间仅在必要时以接口或者消息队列方式进行数据交互,从而避免了构建单一数 ...
- 《从0到1学习Flink》—— Flink 写入数据到 Kafka
前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用 ...
- 《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch
前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1 ...
- 《从0到1学习Flink》—— Data Sink 介绍
前言 再上一篇文章中 <从0到1学习Flink>-- Data Source 介绍 讲解了 Flink Data Source ,那么这里就来讲讲 Flink Data Sink 吧. 首 ...
- Flink 之 Data Sink
首先 Sink 的中文释义为: 下沉; 下陷; 沉没; 使下沉; 使沉没; 倒下; 坐下; 所以,对应 Data sink 意思有点把数据存储下来(落库)的意思: Source 数据源 ---- ...
- 大数据平台搭建-kafka集群的搭建
本系列文章主要阐述大数据计算平台相关框架的搭建,包括如下内容: 基础环境安装 zookeeper集群的搭建 kafka集群的搭建 hadoop/hbase集群的搭建 spark集群的搭建 flink集 ...
- flume接收http请求,并将数据写到kafka
flume接收http请求,并将数据写到kafka,spark消费kafka的数据.是数据采集的经典框架. 直接上flume的配置: source : http channel : file sink ...
随机推荐
- 洛谷-P1469 找筷子 (位运算)
题意:给你一组数,求数组中唯一的出现次数为奇数的那个数. 题解:这题其实直接桶排一下就行了,但是最后一个点会TLE. 后来了解到这题可以用位运算来解决: ^(异或)运算符:用于比较两个二进制数 ...
- 郁闷的出纳员 HYSBZ - 1503
OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的 工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资.如果他 ...
- LianLianKan HDU - 4272 状压dp
题意:长度为n(n<=1000)的栈,栈顶元素可以与下面1~5个数中相同的元素消去,问最后能都完全消去. 题解: 比如这个序列12345678910112这个位置的最远可匹配位置能到11为什么呢 ...
- C# Dictionary(字典)源码解析&效率分析
通过查阅网上相关资料和查看微软源码,我对Dictionary有了更深的理解. Dictionary,翻译为中文是字典,通过查看源码发现,它真的内部结构真的和平时用的字典思想一样. 我们平时用的字典主要 ...
- 2.Url重定向和重写
虚拟地址===>真实地址映射(搜索引擎优化,抽象能力,防盗链) 之前:IIS重写模块规则,Apache mod_Rewrite.Nginx上的URL重写. 现在:通过中间件来实现. 重定向与重写 ...
- pip&conda 换源
PIP 各种可用源 清华源:https://pypi.tuna.tsinghua.edu.cn/simple 临时指定源 pip install -i https://pypi.tuna.tsingh ...
- 1.搭建NFS环境,用于存储数据
作者 微信:tangy8080 电子邮箱:914661180@qq.com 更新时间:2019-06-12 14:59:50 星期三 欢迎您订阅和分享我的订阅号,订阅号内会不定期分享一些我自己学习过程 ...
- Leetcode(712)-账户合并
给定一个列表 accounts,每个元素 accounts[i] 是一个字符串列表,其中第一个元素 accounts[i][0] 是 名称 (name),其余元素是 emails 表示该帐户的邮箱地址 ...
- HEXO添加置顶功能
使用库:参考 http://wangwlj.com/2018/01/09/blog_pin_post/ 目前已经有修改后支持置顶的仓库,可以直接用以下命令安装.(cmd 到博客根目录,nmp运行) $ ...
- LCIS(最长公共上升子序列)模板
求出LCIS并输出其路径. 1 #include <iostream> 2 #include <cstdio> 3 #include <string> 4 #inc ...