P2569 [SCOI2010]股票交易 dp 单调队列优化
LINK:股票交易
题目确实不算难 但是坑点挺多 关于初值的处理问题我就wa了两次。
所以来谢罪。
由于在手中的邮票的数量存在限制 且每次买入卖出也有限制。
必然要多开一维来存每天的邮票数量。
那么容易想到\(f_{i,j}\)表示到了第\(i\)天有\(j\)张邮票的最大赚钱值。
每次需要间隔W天进行操作 W变成W+1 那么在第i天能够转移的是 \(0~i-W\)这个区间了。
枚举前面哪一天 买入卖出k张邮票 就可以得到\(n^2m^2\)的做法.
容易想到我们只需要\(i-W\)这个地方的值即可 强制要求 \(i,j,k,i<j\) 有\(f_{i,k}\leq f_{j,k}\)显然这样做不会更差.
复杂度为\(nm^2\)枚举决策k的时候容易想到单调队列优化 那么复杂度为\(n\cdot m\)
关于初值的问题 每次对于\(0-L\)先进行强制赋值然后和前一天比max 这点容易想当然的写错...
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=2010;
int n,maxx,W;
int f[MAXN][MAXN];
int q[MAXN],t,h;
int main()
{
//freopen("1.in","r",stdin);
get(n);get(maxx);get(W)+1;
memset(f,0xcf,sizeof(f));
f[0][0]=0;
rep(1,n,i)
{
int get(l),get(r),get(L),get(R);
if(i<W)
{
f[i][0]=0;
rep(1,L,j)f[i][j]=max(f[i-1][j],-l*j);
rep(L+1,maxx,j)f[i][j]=max(f[i][j],f[i-1][j]);
}
else
{
//考虑买入.
f[i][0]=f[i-1][0];
q[t=h=1]=0;
rep(1,maxx,j)
{
while(h<t&&j-q[h]>L)++h;
f[i][j]=max(f[i-1][j],f[i-W][q[h]]-l*(j-q[h]));
while(h<=t&&f[i-W][j]+j*l>=f[i-W][q[t]]+q[t]*l)--t;
q[++t]=j;
}
//考虑卖出.
q[t=h=1]=maxx;
fep(maxx-1,0,j)
{
while(h<t&&q[h]-j>R)++h;
f[i][j]=max(f[i][j],f[i-W][q[h]]+(q[h]-j)*r);
while(h<=t&&f[i-W][j]+j*r>=f[i-W][q[t]]+q[t]*r)--t;
q[++t]=j;
}
}
}
put(f[n][0]);
return 0;
}
P2569 [SCOI2010]股票交易 dp 单调队列优化的更多相关文章
- [luogu] P2569 [SCOI2010]股票交易 (单调队列优化)
P2569 [SCOI2010]股票交易 题目描述 最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(\te ...
- 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)
传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...
- [SCOI2010] 股票交易 (单调队列优化dp)
题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...
- BZOJ1855 [Scoi2010]股票交易 【单调队列优化dp】
题目链接 BZOJ1855 题解 设\(f[i][j]\)表示第\(i\)天结束时拥有\(j\)张股票时的最大收益 若\(i \le W\),显然在这之前不可能有交易 \[f[i][j] = max\ ...
- 【BZOJ1855】[Scoi2010]股票交易 DP+单调队列
[BZOJ1855][Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预 ...
- 洛谷P2569 [SCOI2010]股票交易(单调队列)
传送门 惭愧……这种题目都没看出来…… 首先,我们用$dp[i][j]$表示在第$i$天,手上有$j$股时的最大收益 第一,我们可以直接买股票,即$dp[i][j]=-j*AP_i$,这个直接计算即可 ...
- 洛谷P2569 (BZOJ1855)[SCOI2010]股票交易 【单调队列优化DP】
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...
- [SCOI2010]股票交易(单调队列优化dp)
[SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第 ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
随机推荐
- 你从来没了解过的CSS浮动
浮动到底是做什么呢?他们是如何影响相关元素的盒模型的呢?浮动的元素与内联元素有什么不同呢?制定浮动元素的位置的具体规则是什么?clear属性是如何工作的,并且它的作用是什么? 即使是经验丰富的开发者也 ...
- css3-pointer-events
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- zabbix fping 监控网络质量
1,zabbix server (proxy)安装fping wget http://www.fping.org/dist/fping-3.16.tar.gz tar zxvf fping-3.16. ...
- MVC + EFCore 项目实战 - 数仓管理系统2- 搭建基本框架配置EFCore
本次课程就正式进入开发部分. 首先我们先搭建项目框架,还是和之前渐进式风格保持一致,除必备组件外,尽量使用原生功能以方便大家理解. 开发工具:vs 2019 或以上 数据库:SQL SERVER 20 ...
- mysql numeric
tinyint 1个字节 smallint 2个字节 mediumint 3个字节 int 4个字节 bigint 8个字节
- 李航统计学习方法(第二版)(五):k 近邻算法简介
1 简介 k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类.k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通 ...
- javascript基础(三): 操作DOM对象(重点)
DOM:文档对象模型 核心 浏览器网页就是一个Dom树形结构! 更新:更新Dom节点 遍历Dom节点:得到Dom节点 删除:删除一个Dom节点 添加:添加一个新的节点 要操作一个Dom节点,就必须要先 ...
- nginx一个端口配置多个不同服务映射
upstream tomcat_server{ server 127.0.0.1:8087; server 192.168.149.117:8088; } server { listen 8088; ...
- C# 泛型中的数据类型判定与转换
提到类型转换,首先要明确C#中的数据类型,主要分为值类型和引用类型: 1.常用的值类型有:(struct) 整型家族:int,byte,char,short,long等等一系列 浮点家族:float, ...
- 技术小菜比入坑 LinkedList,i 了 i 了
先看再点赞,给自己一点思考的时间,思考过后请毫不犹豫微信搜索[沉默王二],关注这个长发飘飘却靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有技术大佬整理 ...