题解 CF1446D2 【Frequency Problem (Hard Version)】
给出一个跑得快一点的做法,洛谷最优解 (时间是第二名的 \(\frac{1}{2}\)), CF 第一页
D1
首先找到整个序列的众数 \(G\), 很容易证明答案序列中的两个众数中其中一个是 \(G\) 。
知道了这个结论以后,我们可以枚举在序列中出现的数 \(K\), 让 \(G\) 的权值为 \(1\), \(K\) 的权值为 \(-1\), 然后就找一下最长的权值为 \(0\) 的串即可。这个开个桶统计即可。
这个和大家一样,就不多说了。
Code(片段) :
const int N = 2e5 + 7;
int n, a[N], cnt[N], zs, ans, fir[N << 1];
void work(int x) {
int now = N;
memset(fir, -1, sizeof(fir));
fir[now] = 0;
L(i, 1, n) {
if(a[i] == zs) now ++;
else if(a[i] == x) now --;
if(fir[now] == -1) fir[now] = i;
else ans = max(ans, i - fir[now]);
}
}
int main() {
scanf("%d", &n);
L(i, 1, n) scanf("%d", &a[i]), cnt[a[i]] ++;
L(i, 1, n) if(cnt[i] > cnt[zs]) zs = i;
L(i, 1, min(n, 100)) if(i != zs) work(i);
printf("%d\n", ans);
return 0;
}
D2
同样令众数为 \(G\)。
根号分治。
对于出现次数 \(> B\) 的数,可以像 \(D1\) 一样处理。
对于出现次数 \(\le B\) 的数 (设为 \(K\))(重点):
设出现次数为 \(cnt\)。
首先可以枚举选中的序列的第一个出现 \(K\) 的位置是 \(K\) 的第几次出现的位置。
然后发现这个序列中包含的 \(G\) 的个数一定 \(\le cnt\)。
于是我们可以只考虑枚举的这个位置前面的 \(cnt\) 个 \(G\) (不能包含上一个数字 \(K\)) 和后面 \(cnt\) 个 \(G\) (可以包含后面的数字 \(K\)) ,然后按照 \(D1\) 的方法做即可。
有一些细节,具体见代码。
Code :
#include<bits/stdc++.h>
#define L(i, j, k) for(int i = j, i##E = k; i <= i##E; i++)
#define R(i, j, k) for(int i = j, i##E = k; i >= i##E; i--)
#define ll long long
#define ull unsigned long long
#define db double
#define pii pair<int, int>
#define mkp make_pair
using namespace std;
char buf[256],*p1=buf,*p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,256,stdin),p1==p2)?EOF:*p1++)
inline int read() {
int x = 0, f = 1; char ch = getchar();
while(!isdigit(ch)) { if(ch=='-') f = -1; ch = getchar(); }
while(isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
const int N = 2e5 + 7;
const int B = 233;
int n, a[N], cnt[N], zs, ans;
int fir[N << 1];
int max(int x, int y) { return x > y ? x : y; }
void worka(int x) {
int now = N;
memset(fir, -1, sizeof(fir));
fir[now] = 0;
L(i, 1, n) {
if(a[i] == zs) now ++;
else if(a[i] == x) now --;
if(!~fir[now]) fir[now] = i;
else ans = max(ans, i - fir[now]);
}
}
int lef[N], rig[N], f[N], fg[N];
vector<int> ve[N];
void workb(int x) {
L(i, 1, cnt[x]) {
fill(fir + N - cnt[x] - 2, fir + N + cnt[x] * 2 + 3, -1);
int tot = 0, las = (i == 1 ? 0 : ve[x][i - 2]), now = ve[x][i - 1], len = 0;
while(lef[now - 1] > las && len <= cnt[x]) now = lef[now - 1], ++len, f[++tot] = now;
int dd = i, KK = N;
if(!lef[now - 1] && i == 1) fir[N] = 0;
reverse(f + 1, f + tot + 1);
f[++tot] = ve[x][i - 1], fg[tot] = 1;
now = ve[x][i - 1], len = 0;
while(rig[now + 1] && len <= cnt[x]) {
now = rig[now + 1];
while(dd < cnt[x] && ve[x][dd] < now) f[++tot] = ve[x][dd], fg[tot] = 1, ++ dd;
++len, f[++tot] = now;
}
if(len <= cnt[x]) while(dd < cnt[x]) f[++tot] = ve[x][dd], fg[tot] = 1, ++ dd;
f[tot + 1] = n + 1;
if(rig[now + 1]) f[tot + 1] = rig[now + 1];
L(j, 1, tot) {
if(fg[j] == 1) -- KK, fg[j] = 0; else ++ KK;
if(!~fir[KK]) fir[KK] = f[j];
else ans = max(ans, f[j + 1] - 1 - fir[KK]);
}
}
}
int main() {
n = read();
L(i, 1, n) a[i] = read(), cnt[a[i]] ++;
L(i, 1, n) if(cnt[i] > cnt[zs]) zs = i;
L(i, 1, n) if(a[i] == zs) lef[i] = rig[i] = i;
L(i, 1, n) if(!lef[i]) lef[i] = lef[i - 1];
R(i, n, 1) if(!rig[i]) rig[i] = rig[i + 1];
L(i, 1, n) if(cnt[a[i]] <= B) ve[a[i]].push_back(i);
L(i, 1, n) if(i != zs) {
if(cnt[i] > B) worka(i);
else workb(i);
}
printf("%d\n", ans);
return 0;
}
题解 CF1446D2 【Frequency Problem (Hard Version)】的更多相关文章
- Codeforces 1446D2 - Frequency Problem (Hard Version)(根分)
Codeforces 题面传送门 & 洛谷题面传送门 人菜结论题做不动/kk 首先考虑此题一个非常关键的结论:我们设整个数列的众数为 \(G\),那么在最优子段中,\(G\) 一定是该子段的众 ...
- Possible concurrency problem: Replicated version id X matches in-memory version for session ...
The message basically is saying that a replicated session is overriding an existing session in that ...
- 【题解】Tree-String Problem Codeforces 291E AC自动机
Prelude 传送到Codeforces:(/ω\)--- (/ω•\) Solution 很水的一道题. 对查询的串建出来AC自动机,然后树上随便跑跑就行了. 为什么要写这篇题解呢? 我第一眼看到 ...
- Description Resource Path Location Type Java compiler level does not match the version of the installed Java project facet Unknown Faceted Project Problem (Java Version Mismatch)
project 编译问题,需要三处的jdk版本要保持一致,才能编译通过. 1.在项目上右键properties->project Facets->修改右侧的version 保持一致 2. ...
- P1832题解 A+B Problem(再升级)
万能的打表 既然说到素数,必须先打素数表筛出素数, 每个素数可以无限取,这就是完全背包了. 这次打个质数表: bool b[1001]={1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,1 ...
- 题解 CF1428G Lucky Numbers (Easy Version and Hard Version)
这题没有压行就成 \(\texttt{Hard Version}\) 最短代码解了( 要知道这题那么 \(sb\) 就不啃 \(D\) 和 \(E\) 了. \(\texttt{Solution}\) ...
- 题解:T103342 Problem A. 最近公共祖先
题目链接 题目大意 求每个点对的lca深度的和 以每一层分析,得出通式 由于1e9的数据范围要化简表达式得到O(能过) 瞎搞后就是2^(2n+2)-(4n+2)*2^n-2 code: #includ ...
- 多校联训 DS 专题
CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...
- 记一次jdk升级引起的 Unsupported major.minor version 51.0
之前jdk 一直是1.6,tomcat 是6.x 版本,, 现在引入的新的jar, 出现 Caused by: java.lang.UnsupportedClassVersionError: org/ ...
随机推荐
- binary hacks读数笔记(readelf命令)
可以用readelf命令来查看elf文件内容,跟objdump相比,这个命令更详细. 1. readelf -h SimpleSection.o ELF Header: Magic: 7f 45 4c ...
- Fiddler的一系列学习瞎记2(没有章法的笔记)
前言 不适合小白,因为很多需要小白来掌握的东西我都没有写,就是补充自己还不会的东西,所以,有些同僚看起来可能感觉不是很清楚. 正文: 瞎记2-什么是代理服务器 1.web代理服务器,是在客户端和服务器 ...
- Java的注释-标识符和关键字
1.Java注释 单行注释 多行注释 文档注释 代码示例 public class Hello{ public static void main(String[] args) { ...
- simple-rpc
RPC的实现原理 正如上一讲所说,RPC主要是为了解决的两个问题: 解决分布式系统中,服务之间的调用问题. 远程调用时,要能够像本地调用一样方便,让调用者感知不到远程调用的逻辑. 还是以计算器Calc ...
- 03、MyBatis 映射文件
1.XML映射器 2.select Select元素来定义查询操作 Id:唯一标识符 - 用来引用这条语句,需要和接口的方法名一致 parameterType:参数类型 - 可以不传,MyBatis会 ...
- kali 系列学习02 - 被动扫描
被动扫描是指目标无法察觉的情况下进行信息收集,注意有经验的渗透工程师会在信息收集上花费整个测试过程一半以上的时间,信息量太大,需要自动化的信息收集工具. 一.借鉴<kali linux2 网络渗 ...
- 防sql注入函数
- 厉害!这份阿里面试官 甩出的Spring源码笔记,GitHub上已经爆火
前言 时至今日,Spring 在 Java 生态系统与就业市场上,面试出镜率之高,投产规模之广,无出其右.随着技术的发展,Spring 从往日的 IoC 框架,已发展成 Cloud Native 基础 ...
- 在线思维导图Ayoa可以用来梳理双十一优惠规则哦
一年一度的双十一又要来了,小伙伴们是否准备好开始买买买了呢?今年双十一,遇上英雄联盟S10总决赛,1/4决赛苏宁对上京东也让这个"电商大战"产生了很多有趣的梗.当然在玩梗的同时,广 ...
- jmeter简单的压力测试
Jmeter是一个非常好用的压力测试工具. Jmeter用来做轻量级的压力测试,非常合适,只需要十几分钟,就能把压力测试需要的脚本写好.相比LR来说操作简单方便,关键是免费,基于JAVA开发,所以需 ...