给出一个跑得快一点的做法,洛谷最优解 (时间是第二名的 \(\frac{1}{2}\)), CF 第一页

D1

首先找到整个序列的众数 \(G\), 很容易证明答案序列中的两个众数中其中一个是 \(G\) 。

知道了这个结论以后,我们可以枚举在序列中出现的数 \(K\), 让 \(G\) 的权值为 \(1\), \(K\) 的权值为 \(-1\), 然后就找一下最长的权值为 \(0\) 的串即可。这个开个桶统计即可。

这个和大家一样,就不多说了。

Code(片段) :

const int N = 2e5 + 7;
int n, a[N], cnt[N], zs, ans, fir[N << 1];
void work(int x) {
int now = N;
memset(fir, -1, sizeof(fir));
fir[now] = 0;
L(i, 1, n) {
if(a[i] == zs) now ++;
else if(a[i] == x) now --;
if(fir[now] == -1) fir[now] = i;
else ans = max(ans, i - fir[now]);
}
}
int main() {
scanf("%d", &n);
L(i, 1, n) scanf("%d", &a[i]), cnt[a[i]] ++;
L(i, 1, n) if(cnt[i] > cnt[zs]) zs = i;
L(i, 1, min(n, 100)) if(i != zs) work(i);
printf("%d\n", ans);
return 0;
}

D2

同样令众数为 \(G\)。

根号分治。

对于出现次数 \(> B\) 的数,可以像 \(D1\) 一样处理。

对于出现次数 \(\le B\) 的数 (设为 \(K\))(重点):

设出现次数为 \(cnt\)。

首先可以枚举选中的序列的第一个出现 \(K\) 的位置是 \(K\) 的第几次出现的位置。

然后发现这个序列中包含的 \(G\) 的个数一定 \(\le cnt\)。

于是我们可以只考虑枚举的这个位置前面的 \(cnt\) 个 \(G\) (不能包含上一个数字 \(K\)) 和后面 \(cnt\) 个 \(G\) (可以包含后面的数字 \(K\)) ,然后按照 \(D1\) 的方法做即可。

有一些细节,具体见代码。

Code :

#include<bits/stdc++.h>
#define L(i, j, k) for(int i = j, i##E = k; i <= i##E; i++)
#define R(i, j, k) for(int i = j, i##E = k; i >= i##E; i--)
#define ll long long
#define ull unsigned long long
#define db double
#define pii pair<int, int>
#define mkp make_pair
using namespace std;
char buf[256],*p1=buf,*p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,256,stdin),p1==p2)?EOF:*p1++)
inline int read() {
int x = 0, f = 1; char ch = getchar();
while(!isdigit(ch)) { if(ch=='-') f = -1; ch = getchar(); }
while(isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
const int N = 2e5 + 7;
const int B = 233;
int n, a[N], cnt[N], zs, ans;
int fir[N << 1];
int max(int x, int y) { return x > y ? x : y; }
void worka(int x) {
int now = N;
memset(fir, -1, sizeof(fir));
fir[now] = 0;
L(i, 1, n) {
if(a[i] == zs) now ++;
else if(a[i] == x) now --;
if(!~fir[now]) fir[now] = i;
else ans = max(ans, i - fir[now]);
}
}
int lef[N], rig[N], f[N], fg[N];
vector<int> ve[N];
void workb(int x) {
L(i, 1, cnt[x]) {
fill(fir + N - cnt[x] - 2, fir + N + cnt[x] * 2 + 3, -1);
int tot = 0, las = (i == 1 ? 0 : ve[x][i - 2]), now = ve[x][i - 1], len = 0;
while(lef[now - 1] > las && len <= cnt[x]) now = lef[now - 1], ++len, f[++tot] = now;
int dd = i, KK = N;
if(!lef[now - 1] && i == 1) fir[N] = 0;
reverse(f + 1, f + tot + 1);
f[++tot] = ve[x][i - 1], fg[tot] = 1;
now = ve[x][i - 1], len = 0;
while(rig[now + 1] && len <= cnt[x]) {
now = rig[now + 1];
while(dd < cnt[x] && ve[x][dd] < now) f[++tot] = ve[x][dd], fg[tot] = 1, ++ dd;
++len, f[++tot] = now;
}
if(len <= cnt[x]) while(dd < cnt[x]) f[++tot] = ve[x][dd], fg[tot] = 1, ++ dd;
f[tot + 1] = n + 1;
if(rig[now + 1]) f[tot + 1] = rig[now + 1];
L(j, 1, tot) {
if(fg[j] == 1) -- KK, fg[j] = 0; else ++ KK;
if(!~fir[KK]) fir[KK] = f[j];
else ans = max(ans, f[j + 1] - 1 - fir[KK]);
}
}
}
int main() {
n = read();
L(i, 1, n) a[i] = read(), cnt[a[i]] ++;
L(i, 1, n) if(cnt[i] > cnt[zs]) zs = i;
L(i, 1, n) if(a[i] == zs) lef[i] = rig[i] = i;
L(i, 1, n) if(!lef[i]) lef[i] = lef[i - 1];
R(i, n, 1) if(!rig[i]) rig[i] = rig[i + 1];
L(i, 1, n) if(cnt[a[i]] <= B) ve[a[i]].push_back(i);
L(i, 1, n) if(i != zs) {
if(cnt[i] > B) worka(i);
else workb(i);
}
printf("%d\n", ans);
return 0;
}

题解 CF1446D2 【Frequency Problem (Hard Version)】的更多相关文章

  1. Codeforces 1446D2 - Frequency Problem (Hard Version)(根分)

    Codeforces 题面传送门 & 洛谷题面传送门 人菜结论题做不动/kk 首先考虑此题一个非常关键的结论:我们设整个数列的众数为 \(G\),那么在最优子段中,\(G\) 一定是该子段的众 ...

  2. Possible concurrency problem: Replicated version id X matches in-memory version for session ...

    The message basically is saying that a replicated session is overriding an existing session in that ...

  3. 【题解】Tree-String Problem Codeforces 291E AC自动机

    Prelude 传送到Codeforces:(/ω\)--- (/ω•\) Solution 很水的一道题. 对查询的串建出来AC自动机,然后树上随便跑跑就行了. 为什么要写这篇题解呢? 我第一眼看到 ...

  4. Description Resource Path Location Type Java compiler level does not match the version of the installed Java project facet Unknown Faceted Project Problem (Java Version Mismatch)

    project 编译问题,需要三处的jdk版本要保持一致,才能编译通过. 1.在项目上右键properties->project Facets->修改右侧的version  保持一致 2. ...

  5. P1832题解 A+B Problem(再升级)

    万能的打表 既然说到素数,必须先打素数表筛出素数, 每个素数可以无限取,这就是完全背包了. 这次打个质数表: bool b[1001]={1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,1 ...

  6. 题解 CF1428G Lucky Numbers (Easy Version and Hard Version)

    这题没有压行就成 \(\texttt{Hard Version}\) 最短代码解了( 要知道这题那么 \(sb\) 就不啃 \(D\) 和 \(E\) 了. \(\texttt{Solution}\) ...

  7. 题解:T103342 Problem A. 最近公共祖先

    题目链接 题目大意 求每个点对的lca深度的和 以每一层分析,得出通式 由于1e9的数据范围要化简表达式得到O(能过) 瞎搞后就是2^(2n+2)-(4n+2)*2^n-2 code: #includ ...

  8. 多校联训 DS 专题

    CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...

  9. 记一次jdk升级引起的 Unsupported major.minor version 51.0

    之前jdk 一直是1.6,tomcat 是6.x 版本,, 现在引入的新的jar, 出现 Caused by: java.lang.UnsupportedClassVersionError: org/ ...

随机推荐

  1. 优测 x QTA 兼容性测试全面启动啦

    鉴于Android系统开放性开发,以及Android系统在智能机市场的覆盖率超高的特点,APP的兼容性测试需求大幅提升.为迎合市场需求,优测(Utest)与QTA合作,全力打造兼容性测试服务.由优测提 ...

  2. innodb为什么需要doublewrite(转)

    InnoDB的page size默认是16KB,而操作系统的一个block size是4KB,磁盘io block则更小.那么InnoDB的page刷到磁盘上要写4个操作系统block,在极端情况下( ...

  3. Python_scrapyRedis零散

    1. # Redis 1.解压,配环境变量 2.win上设置自启动 redis-server --service-install D:\redis\redis.windows.conf --logle ...

  4. Redis订阅

    1.Redis订阅简介 进程间的一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. 2.Redis订阅命令 3.Redis订阅的使用 先订阅后发布后才能收到消息, 1 可以一次性订 ...

  5. 2、Spring Boot配置

    1.配置文件 SpringBoot使用一个全局的配置文件,配置文件名是固定的: •application.properties •application.yml 配置文件的作用:修改SpringBoo ...

  6. wget 快速下载 ftp 文件

    GNU Wget 1.17.1,非交互式的网络文件下载工具. 用法: wget [选项]... [URL]... 长选项所必须的参数在使用短选项时也是必须的. 启动: -V, --version 显示 ...

  7. bWAPP----HTML Injection - Reflected (GET)

    HTML Injection - Reflected (GET) 进入界面, html标签注入 这是核心代码 1 <div id="main"> 2 3 <h1& ...

  8. Hadoop大数据平台之Zookeeper搭建

    环境:CentOS 7.4 (1708  DVD) 工具:MobaXterm 1. 使用xftp将hadoop上传到/usr/local目录下,将其解压并重命名. 2. 修改环境变量并source. ...

  9. Java8常用的内置函数式接口(一)Predicate、Consumer、Supplier、Function

    Java8常用的内置函数式接口(一) 简介 JDK 1.8 API中包含了很多内置的函数式接口.有些是在以前版本的Java中大家耳熟能详的,例如Comparator接口,或者Runnable接口.对这 ...

  10. Javascript 严格模式的一些理解

    平常我们在ECMAscript5中可以声明以下的变量 num = 5; console.log(num);//输出的是变量5 而为了Javascript更合理.更安全.更严谨的方向发展,添加了一种新的 ...