tf
第2章 Tensorflow keras实战
2-0 写在课程之前
课程代码的Tensorflow版本
大部分代码是tensorflow2.0的
课程以tf.kerasAPI为主,因而部分代码可以在tf1.3+运行
另有少量tensorflow1.*版本代码
- 方便大家读懂老代码
2-1 tf-keras简介
理论部分
Tensorflow-keras简介
分类问题、回归问题、损失函数
神经网络、激活函数、批归一化、Dropout
Wide&deep模型
超参数搜索
实战部分
Keras搭建分类模型
Keras回调函数
Keras搭建回归模型
Keras搭建深度神经网络
Keras实现wide&deep模型
Keras与scikit-learn实现超参数搜索
keras 是什么?
◆基于python的高级神经网络API
◆Francois Chollet于2014-2015年编写Keras
◆以Tensorflow、CNTK或者Theano为后端运行,keras必须有后端才可以运行
◆后端可以切换,现在多用tensorflow
◆极方便于快速实验,帮助用户以最少的时间验证自己的想法
Tensorflow-keras是什么
◆Tensorflow对keras API规范的实现
◆相对于以tensorflow为后端的keras,Tensorflow-keras与Tensorflow结合更加紧密
◆实现在tf.keras空间下
Tf-keras和keras联系
基于同一套API
keras程序可以通过改导入方式轻松转为tfkeras程序
反之可能不成立,因为tf.keras有其他特性
相同的JSON和HDF5模型序列化格式和语义
Tf-keras和keras区别
Tf.keras全面支持eager mode
只是用keras.Sequential和keras.Model时没影响
自定义Model内部运算逻辑的时候会有影响
Tf低层API可以使用keras的model.fit等抽象
适用于研究人员
Tf.keras支持基于tf.data的模型训练
Tf.keras支持TPU训练
Tf.keras支持tf.distribution中的分布式策略
其他特性
- Tf.keras可以与Tensorflow中的estimator集成
- Tf.keras可以保存为SavedModel
如何选择?
- 如果想用tf.keras的任何一个特性,那么选tfkeras
- 如果后端互换性很重要,那么选keras
- 如果都不重要,那随便
2-2 分类问题和回归问题
分类问题和回归问题
分类问题预测的是类别,模型的输出是概率分布
- 三分类问题输出例子:[0.2,0.7,0.1], 索引表示分类类别
回归问题预测的是值,模型的输出是一个实数值
目标函数
为什么需要目标函数?
- 参数是逐步调整的
- 目标函数可以帮助衡量模型的好坏
- Model A:[0.1,0.4,0.5]
- Model B:[0.1,0.2,0.7]
分类问题
- 需要衡量目标类别与当前预测的差距
- 三分类问题输出例子:[0.2,0.7,0.1]
- 三分类真实类别:2->one_hot->[0,0,1]
- One-hot编码,把正整数变为向量表达
- 生成一个长度不小于正整数的向量,只有正整数的位置处为1,其余位置都为0
回归问题
- 预测值与真实值的差距
- 平方差损失
- 绝对值损失
目标函数作用
- 模型的训练就是调整参数,使得目标函数逐渐变小的过程
实战
Keras搭建分类模型
Keras回调函数
Keras搭建回归模型
# tf_keras_classification_model
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
2.4.0
sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)
matplotlib 3.2.2
numpy 1.19.4
pandas 1.1.5
sklearn 0.22.2.post1
tensorflow 2.4.0
tensorflow.keras 2.4.0
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
# 训练集拆分为训练集和验证集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
# 查看各数据集shape
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
2-3 实战分类模型之数据读取与展示
# 得到数据集之后,一般会看一下数据集的图像,了解数据集
# 展示图像
def show_single_image(img_arr):
plt.imshow(img_arr, cmap="binary")
plt.show()
show_single_image(x_train[0])
y_train_all
array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)
# 只显示一行不直观,现在我们现实多行多列
def show_imgs(n_rows, n_cols, x_data, y_data, class_names):
assert len(x_data) == len(y_data)
assert n_rows * n_cols < len(x_data)
plt.figure(figsize = (n_cols*1.4, n_rows * 1.6))
for row in range(n_rows):
for col in range(n_cols):
index = n_cols * row + col
plt.subplot(n_rows, n_cols, index+1)
plt.imshow(x_data[index],
cmap="binary",
interpolation="nearest")
plt.axis("off")
plt.title(class_names[y_data[index]])
plt.show()
class_names = ["T-shirt", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
show_imgs(3, 5, x_train, y_train, class_names)
2-4 实战分类模型之模型构建
## 下面开始实现tf.keras模型
# tf.keras.models.Sequential()
# 查看其API https://tensorflow.google.cn/api_docs/python/tf/keras/Sequential#attributes
# model = keras.models.Sequential()
# model.add(keras.layers.Flatten(input_shape=[28, 28]))
# model.add(keras.layers.Dense(300, activation="relu"))
# model.add(keras.layers.Dense(100, activation="relu"))
# model.add(keras.layers.Dense(10, activation="softmax"))
# 上述写法亦可以写作列表的形式
model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
optimizer="Adam",
metrics=["accuracy"])
## 查看模型有多少层
model.layers
[<tensorflow.python.keras.layers.core.Flatten at 0x7f8f64ead278>,
<tensorflow.python.keras.layers.core.Dense at 0x7f8fc0081c50>,
<tensorflow.python.keras.layers.core.Dense at 0x7f8f64f2ceb8>,
<tensorflow.python.keras.layers.core.Dense at 0x7f8fc00a5160>]
## 查看模型概况
model.summary()
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_4 (Flatten) (None, 784) 0
_________________________________________________________________
dense_10 (Dense) (None, 300) 235500
_________________________________________________________________
dense_11 (Dense) (None, 100) 30100
_________________________________________________________________
dense_12 (Dense) (None, 10) 1010
=================================================================
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0
_________________________________________________________________
model.summary()
Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_5 (Flatten) (None, 784) 0
_________________________________________________________________
dense_13 (Dense) (None, 300) 235500
_________________________________________________________________
dense_14 (Dense) (None, 100) 30100
_________________________________________________________________
dense_15 (Dense) (None, 10) 1010
=================================================================
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0
_________________________________________________________________
## 全连接层参数个数的计算
# 第一层和第二层为例 None 表示样本数,
# [None, 784] -> [None, 300],
# y = X * w + b,
# 则w.shape = [784, 300], b = [300]
history = model.fit(x_train, y_train, epochs=10,
validation_data=(x_valid, y_valid)) # 每隔一段时间会用验证集验证
Epoch 1/10
1719/1719 [==============================] - 4s 2ms/step - loss: 6.7652 - accuracy: 0.6911 - val_loss: 0.6093 - val_accuracy: 0.7438
Epoch 2/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.5845 - accuracy: 0.7755 - val_loss: 0.5074 - val_accuracy: 0.8312
Epoch 3/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.4766 - accuracy: 0.8285 - val_loss: 0.4982 - val_accuracy: 0.8358
Epoch 4/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.4469 - accuracy: 0.8406 - val_loss: 0.4517 - val_accuracy: 0.8452
Epoch 5/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.4139 - accuracy: 0.8531 - val_loss: 0.4542 - val_accuracy: 0.8540
Epoch 6/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.4083 - accuracy: 0.8568 - val_loss: 0.3902 - val_accuracy: 0.8588
Epoch 7/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3817 - accuracy: 0.8613 - val_loss: 0.4160 - val_accuracy: 0.8604
Epoch 8/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3720 - accuracy: 0.8684 - val_loss: 0.4020 - val_accuracy: 0.8690
Epoch 9/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3551 - accuracy: 0.8727 - val_loss: 0.4674 - val_accuracy: 0.8576
Epoch 10/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3631 - accuracy: 0.8730 - val_loss: 0.3974 - val_accuracy: 0.8686
type(history)
tensorflow.python.keras.callbacks.History
history.history # 存储训练过程中的一些指标值
{'accuracy': [0.7261272668838501,
0.7946909070014954,
0.8306000232696533,
0.8408545255661011,
0.8514363765716553,
0.8586909174919128,
0.8612363338470459,
0.8690000176429749,
0.8706181645393372,
0.8758000135421753],
'loss': [2.1727123260498047,
0.5617926120758057,
0.47968995571136475,
0.4502112567424774,
0.42252394556999207,
0.40437114238739014,
0.3874453604221344,
0.3695518672466278,
0.3600151538848877,
0.35218536853790283],
'val_accuracy': [0.7437999844551086,
0.8312000036239624,
0.8357999920845032,
0.8452000021934509,
0.8539999723434448,
0.8587999939918518,
0.8604000210762024,
0.8690000176429749,
0.8575999736785889,
0.8686000108718872],
'val_loss': [0.6092722415924072,
0.5074121952056885,
0.49819114804267883,
0.4516642689704895,
0.45421797037124634,
0.3901795446872711,
0.4160061180591583,
0.40199676156044006,
0.467364639043808,
0.3974425494670868]}
# 绘制变化过程
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()
plot_learning_curves(history)
一个完成的分类模型包含以下步骤:
- 数据处理
- 模型构建
- 模型训练
- 指标可视化
2-5 实战分类模型之数据归一化
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
# 训练集拆分为训练集和验证集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
# 查看各数据集shape
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
## 数据归一化
# x = (x-u)/ std
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# x_train:[None, 28, 28] -> [None, 784]
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
# 输出归一化前后训练集的最大和最小值
print(np.max(x_train), np.min(x_train))
print(np.max(x_train_scaled), np.min(x_train_scaled))
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
255 0
2.0231433 -0.8105136
model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
optimizer="Adam",
metrics=["accuracy"])
history = model.fit(x_train_scaled, y_train, epochs=10,
validation_data=(x_valid_scaled, y_valid)) # 每隔一段时间会用验证集验证
Epoch 1/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.5684 - accuracy: 0.7943 - val_loss: 0.3538 - val_accuracy: 0.8718
Epoch 2/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3485 - accuracy: 0.8704 - val_loss: 0.3592 - val_accuracy: 0.8734
Epoch 3/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3227 - accuracy: 0.8799 - val_loss: 0.3563 - val_accuracy: 0.8738
Epoch 4/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3003 - accuracy: 0.8879 - val_loss: 0.3185 - val_accuracy: 0.8866
Epoch 5/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2742 - accuracy: 0.8963 - val_loss: 0.3146 - val_accuracy: 0.8892
Epoch 6/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2567 - accuracy: 0.9035 - val_loss: 0.3038 - val_accuracy: 0.8942
Epoch 7/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2407 - accuracy: 0.9102 - val_loss: 0.3153 - val_accuracy: 0.8902
Epoch 8/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2202 - accuracy: 0.9178 - val_loss: 0.3043 - val_accuracy: 0.8932
Epoch 9/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2105 - accuracy: 0.9208 - val_loss: 0.3243 - val_accuracy: 0.8908
Epoch 10/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2047 - accuracy: 0.9212 - val_loss: 0.3316 - val_accuracy: 0.8938
# 绘制变化过程
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()
plot_learning_curves(history)
model.evaluate(x_test_scaled, y_test)
313/313 [==============================] - 1s 2ms/step - loss: 0.3609 - accuracy: 0.8873
[0.3608780801296234, 0.8873000144958496]
2-6 实战回调函数
https://tensorflow.google.cn/api_docs/python/tf/keras/callbacks
作用:当训练模型时,有些时间可能需要做一些事情,比如
loss不再下降时,提前停掉迭代,即 tf.keras.callbacks.EarlyStopping
保存所有参数的中间状态,在神经网络中每隔段时间保存该checkpoint, 即 tf.keras.callbacks.ModelCheckpoint
Tensorboard 可视化, 即 tf.keras.callbacks.TensorBoard
代码实战
### 代码实战
# ------------------------------------------原------------------------------------
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
# 训练集拆分为训练集和验证集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
# 查看各数据集shape
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
## 数据归一化
# x = (x-u)/ std
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# x_train:[None, 28, 28] -> [None, 784]
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
# 输出归一化前后训练集的最大和最小值
print(np.max(x_train), np.min(x_train))
print(np.max(x_train_scaled), np.min(x_train_scaled))
model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
optimizer="Adam",
metrics=["accuracy"])
# ------------------------------------------原------------------------------------
# ------------------------------------------改------------------------------------
# 由于callbacks是在训练过程中做一些侦听,可以加在fit()中
# 添加方式为,定义callback数组,
# Tensorboard, --> 保存至文件夹
# earlystopping,
# ModelCheckpoint --> 保存至文件
# 文件夹定义
logdir = "./callbacks"
if not os.path.exists(logdir):
os.mkdir(logdir)
# 文件定义
output_model_file = os.path.join(logdir,
"fashion_mnist_model.h5")
callbacks = [
keras.callbacks.TensorBoard(logdir),
keras.callbacks.ModelCheckpoint(output_model_file,
save_best_only=True # 添加该参数,保存最好的模型,否则,保存最近的模型
),
# earlystopping(
# monitor= , # 关注指标,一般关注验证集目标函数的值
# min_delta= , # 阈值,本次训练和上次训练的差值与该值比较,如果低于该阈值,提前停止
# patience= , # 设置连续patience次差值低于min_delta,停止
# )
keras.callbacks.EarlyStopping(
patience = 5,
min_delta = 1e-3
)
]
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
255 0
2.0231433 -0.8105136
# fit 中添加callbacks 参数
history = model.fit(x_train_scaled, y_train, epochs=10,
validation_data=(x_valid_scaled, y_valid), # 每隔一段时间会用验证集验证
callbacks=callbacks)
# ------------------------------------------改------------------------------------
Epoch 1/10
1719/1719 [==============================] - 6s 3ms/step - loss: 0.5581 - accuracy: 0.7962 - val_loss: 0.3765 - val_accuracy: 0.8618
Epoch 2/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3533 - accuracy: 0.8697 - val_loss: 0.3387 - val_accuracy: 0.8778
Epoch 3/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3236 - accuracy: 0.8799 - val_loss: 0.3310 - val_accuracy: 0.8824
Epoch 4/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2922 - accuracy: 0.8894 - val_loss: 0.3211 - val_accuracy: 0.8816
Epoch 5/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2732 - accuracy: 0.8966 - val_loss: 0.3204 - val_accuracy: 0.8822
Epoch 6/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2476 - accuracy: 0.9057 - val_loss: 0.3019 - val_accuracy: 0.8908
Epoch 7/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2375 - accuracy: 0.9115 - val_loss: 0.3109 - val_accuracy: 0.8908
Epoch 8/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2219 - accuracy: 0.9146 - val_loss: 0.3283 - val_accuracy: 0.8910
Epoch 9/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2153 - accuracy: 0.9200 - val_loss: 0.3627 - val_accuracy: 0.8794
Epoch 10/10
1719/1719 [==============================] - 4s 2ms/step - loss: 0.2073 - accuracy: 0.9208 - val_loss: 0.3470 - val_accuracy: 0.8926
!ls ./callbacks/
fashion_mnist_model.h5 train validation
# 打开tensorBoard
!tensorboard --logdir=callbacks
2021-01-08 01:32:15.476399: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1
W0108 01:32:16.959013 140229050181376 plugin_event_accumulator.py:322] Found more than one graph event per run, or there was a metagraph containing a graph_def, as well as one or more graph events. Overwriting the graph with the newest event.
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.4.0 at http://localhost:6006/ (Press CTRL+C to quit)
http://localhost:6006/
http://localhost:6006/
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/tensorboard/manager.py", line 273, in remove_info_file
os.unlink(_get_info_file_path())
KeyboardInterrupt
colab 无法直接调用tensorboard 解决方法
- 安装ngrok
!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip ngrok-stable-linux-amd64.zip
- run TensorBoard on Colab
在colab notebook中依次执行以下命令
LOG_DIR = './log'
get_ipython().system_raw(
'tensorboard --logdir {} --host 0.0.0.0 --port 6006 &'
.format(LOG_DIR)
)
-------------------------------------------------------------------------------------------------
get_ipython().system_raw('./ngrok http 6006 &')
-------------------------------------------------------------------------------------------------
! curl -s http://localhost:4040/api/tunnels | python3 -c \
"import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"
- 打开链接查看效果
!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip ngrok-stable-linux-amd64.zip
--2021-01-08 01:38:30-- https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
Resolving bin.equinox.io (bin.equinox.io)... 52.2.56.23, 52.44.17.83, 52.200.34.95, ...
Connecting to bin.equinox.io (bin.equinox.io)|52.2.56.23|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 13773305 (13M) [application/octet-stream]
Saving to: ‘ngrok-stable-linux-amd64.zip’
ngrok-stable-linux- 100%[===================>] 13.13M 18.7MB/s in 0.7s
2021-01-08 01:38:31 (18.7 MB/s) - ‘ngrok-stable-linux-amd64.zip’ saved [13773305/13773305]
Archive: ngrok-stable-linux-amd64.zip
inflating: ngrok
logdir = "./callbacks"
get_ipython().system_raw(
'tensorboard --logdir {} --host 0.0.0.0 --port 6006 &'
.format(logdir)
)
get_ipython().system_raw('./ngrok http 6006 &')
!curl -s http://localhost:4040/api/tunnels | python3 -c \
"import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"
# 失败
https://3d8fde90b3b6.ngrok.io
下列方法可用
%reload_ext tensorboard
%tensorboard --logdir "./callbacks"
2-7 实战回归模型
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
# 新数据集---房价预测
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)
.. _california_housing_dataset:
California Housing dataset
--------------------------
**Data Set Characteristics:**
:Number of Instances: 20640
:Number of Attributes: 8 numeric, predictive attributes and the target
:Attribute Information:
- MedInc median income in block
- HouseAge median house age in block
- AveRooms average number of rooms
- AveBedrms average number of bedrooms
- Population block population
- AveOccup average house occupancy
- Latitude house block latitude
- Longitude house block longitude
:Missing Attribute Values: None
This dataset was obtained from the StatLib repository.
http://lib.stat.cmu.edu/datasets/
The target variable is the median house value for California districts.
This dataset was derived from the 1990 U.S. census, using one row per census
block group. A block group is the smallest geographical unit for which the U.S.
Census Bureau publishes sample data (a block group typically has a population
of 600 to 3,000 people).
It can be downloaded/loaded using the
:func:`sklearn.datasets.fetch_california_housing` function.
.. topic:: References
- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297
(20640, 8)
(20640,)
import pprint
pprint.pprint(housing.data[:5])
pprint.pprint(housing.target[:5])
array([[ 8.32520000e+00, 4.10000000e+01, 6.98412698e+00,
1.02380952e+00, 3.22000000e+02, 2.55555556e+00,
3.78800000e+01, -1.22230000e+02],
[ 8.30140000e+00, 2.10000000e+01, 6.23813708e+00,
9.71880492e-01, 2.40100000e+03, 2.10984183e+00,
3.78600000e+01, -1.22220000e+02],
[ 7.25740000e+00, 5.20000000e+01, 8.28813559e+00,
1.07344633e+00, 4.96000000e+02, 2.80225989e+00,
3.78500000e+01, -1.22240000e+02],
[ 5.64310000e+00, 5.20000000e+01, 5.81735160e+00,
1.07305936e+00, 5.58000000e+02, 2.54794521e+00,
3.78500000e+01, -1.22250000e+02],
[ 3.84620000e+00, 5.20000000e+01, 6.28185328e+00,
1.08108108e+00, 5.65000000e+02, 2.18146718e+00,
3.78500000e+01, -1.22250000e+02]])
array([4.526, 3.585, 3.521, 3.413, 3.422])
from sklearn.model_selection import train_test_split
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state=7, test_size=0.25
) # 默认3:1的比例划分
x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all,
random_state=11)
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)
(11610, 8) (11610,)
(3870, 8) (3870,)
(5160, 8) (5160,)
# 归一化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
# 获取训练集的均值和方差, 在测试集和验证集上都用和训练集一样的均值和方差
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)
# 搭建模型
model = keras.models.Sequential([
keras.layers.Dense(30, activation="relu",
input_shape=x_train.shape[1:]), # 8
keras.layers.Dense(1),
])
model.summary() # model 信息
model.compile(loss="mean_squared_error", optimizer="sgd") # 编译model, 设置损失函数和优化方法
callbacks = [keras.callbacks.EarlyStopping(
patience=5, min_delta=1e-3
)]
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 30) 270
_________________________________________________________________
dense_5 (Dense) (None, 1) 31
=================================================================
Total params: 301
Trainable params: 301
Non-trainable params: 0
_________________________________________________________________
# 训练模型
history = model.fit(x_train_scaled, y_train,
validation_data=(x_valid_scaled, y_valid),
epochs = 100,
callbacks=callbacks)
Epoch 1/100
363/363 [==============================] - 1s 2ms/step - loss: 1.6214 - val_loss: 0.5763
Epoch 2/100
363/363 [==============================] - 1s 2ms/step - loss: 0.5264 - val_loss: 0.4949
Epoch 3/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4588 - val_loss: 0.4752
Epoch 4/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4485 - val_loss: 0.4457
Epoch 5/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4158 - val_loss: 0.4256
Epoch 6/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4042 - val_loss: 0.4230
Epoch 7/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4001 - val_loss: 0.4183
Epoch 8/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3986 - val_loss: 0.4169
Epoch 9/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4005 - val_loss: 0.4102
Epoch 10/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3910 - val_loss: 0.3958
Epoch 11/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3766 - val_loss: 0.4064
Epoch 12/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3965 - val_loss: 0.3906
Epoch 13/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3726 - val_loss: 0.3879
Epoch 14/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3789 - val_loss: 0.3896
Epoch 15/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3906 - val_loss: 0.3848
Epoch 16/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3817 - val_loss: 0.3761
Epoch 17/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3731 - val_loss: 0.3800
Epoch 18/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3687 - val_loss: 0.3720
Epoch 19/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3705 - val_loss: 0.3678
Epoch 20/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3681 - val_loss: 0.3827
Epoch 21/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3705 - val_loss: 0.3676
Epoch 22/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3408 - val_loss: 0.3653
Epoch 23/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3543 - val_loss: 0.3684
Epoch 24/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3523 - val_loss: 0.3594
Epoch 25/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3586 - val_loss: 0.3602
Epoch 26/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3501 - val_loss: 0.3642
Epoch 27/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3439 - val_loss: 0.3605
Epoch 28/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3365 - val_loss: 0.3535
Epoch 29/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3406 - val_loss: 0.3553
Epoch 30/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3392 - val_loss: 0.3576
Epoch 31/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3478 - val_loss: 0.3519
Epoch 32/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3458 - val_loss: 0.3580
Epoch 33/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3236 - val_loss: 0.3534
Epoch 34/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3406 - val_loss: 0.3579
Epoch 35/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3487 - val_loss: 0.3635
Epoch 36/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3459 - val_loss: 0.3483
Epoch 37/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3353 - val_loss: 0.3469
Epoch 38/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3360 - val_loss: 0.3457
Epoch 39/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3360 - val_loss: 0.3518
Epoch 40/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3286 - val_loss: 0.3548
Epoch 41/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3249 - val_loss: 0.3429
Epoch 42/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3334 - val_loss: 0.3640
Epoch 43/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3244 - val_loss: 0.3402
Epoch 44/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3353 - val_loss: 0.3430
Epoch 45/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3265 - val_loss: 0.3402
Epoch 46/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3250 - val_loss: 0.3381
Epoch 47/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3250 - val_loss: 0.3368
Epoch 48/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3162 - val_loss: 0.3380
Epoch 49/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3201 - val_loss: 0.3399
Epoch 50/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3348 - val_loss: 0.3405
Epoch 51/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3246 - val_loss: 0.3387
Epoch 52/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3218 - val_loss: 0.3337
Epoch 53/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3266 - val_loss: 0.3368
Epoch 54/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3227 - val_loss: 0.3386
Epoch 55/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3273 - val_loss: 0.3372
Epoch 56/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3305 - val_loss: 0.3348
Epoch 57/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3132 - val_loss: 0.3306
Epoch 58/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3413 - val_loss: 0.3344
Epoch 59/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3282 - val_loss: 0.3307
Epoch 60/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3161 - val_loss: 0.3278
Epoch 61/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3282 - val_loss: 0.3312
Epoch 62/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3169 - val_loss: 0.3277
Epoch 63/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3257 - val_loss: 0.3294
Epoch 64/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3131 - val_loss: 0.3344
Epoch 65/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3052 - val_loss: 0.3275
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)
plt.show()
plot_learning_curves(history)
# 测试测试集效果
model.evaluate(x_test_scaled, y_test)
162/162 [==============================] - 0s 1ms/step - loss: 0.3329
0.33294564485549927
2-8 神经网络
实战
Keras搭建分类模型
Keras回调函数
Keras搭建回归模型
神经网络训练
- 下山算法
- 找到方向
- 走一步
- 梯度下降
- 求导
- 更新参数
激活函数
归一化
- min-max 归一化 x = (x-min)/(max-min)
- Z-score 归一化 x = \((x - \mu\))/\(\sigma\)
批归一化
- 每层的激活值都做归一化
dropout
Dropout 作用
- 防止过拟合
- 训练集上很好,测试集上不好
- 参数太多,记住样本,不能泛化
2-9 实战深度神经网络
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
# 训练集拆分为训练集和验证集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
# 查看各数据集shape
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
## 数据归一化
# x = (x-u)/ std
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# x_train:[None, 28, 28] -> [None, 784]
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
# 输出归一化前后训练集的最大和最小值
print(np.max(x_train), np.min(x_train))
print(np.max(x_train_scaled), np.min(x_train_scaled))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
255 0
2.0231433 -0.8105136
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
for _ in range(20):
model.add(keras.layers.Dense(10, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))
model.compile(loss="sparse_categorical_crossentropy",
optimizer="Adam",
metrics=["accuracy"])
# ------------------------------------------改------------------------------------
# ------------------------------------------改------------------------------------
# 由于callbacks是在训练过程中做一些侦听,可以加在fit()中
# 添加方式为,定义callback数组,
# Tensorboard, --> 保存至文件夹
# earlystopping,
# ModelCheckpoint --> 保存至文件
# 文件夹定义
logdir = "./dnn_callbacks"
if not os.path.exists(logdir):
os.mkdir(logdir)
# 文件定义
output_model_file = os.path.join(logdir,
"fashion_mnist_model.h5")
callbacks = [
keras.callbacks.TensorBoard(logdir),
keras.callbacks.ModelCheckpoint(output_model_file,
save_best_only=True # 添加该参数,保存最好的模型,否则,保存最近的模型
),
# earlystopping(
# monitor= , # 关注指标,一般关注验证集目标函数的值
# min_delta= , # 阈值,本次训练和上次训练的差值与该值比较,如果低于该阈值,提前停止
# patience= , # 设置连续patience次差值低于min_delta,停止
# )
keras.callbacks.EarlyStopping(
patience = 5,
min_delta = 1e-3
)
]
# 训练模型
history = model.fit(x_train_scaled, y_train,
validation_data=(x_valid_scaled, y_valid),
epochs = 100,
callbacks=callbacks)
Epoch 1/100
1719/1719 [==============================] - 10s 5ms/step - loss: 1.9010 - accuracy: 0.2418 - val_loss: 1.2311 - val_accuracy: 0.5884
Epoch 2/100
1719/1719 [==============================] - 7s 4ms/step - loss: 1.1991 - accuracy: 0.5639 - val_loss: 1.0831 - val_accuracy: 0.6364
Epoch 3/100
1719/1719 [==============================] - 7s 4ms/step - loss: 1.0624 - accuracy: 0.6358 - val_loss: 1.0008 - val_accuracy: 0.6814
Epoch 4/100
1719/1719 [==============================] - 7s 4ms/step - loss: 1.0070 - accuracy: 0.6748 - val_loss: 1.0249 - val_accuracy: 0.6260
Epoch 5/100
1719/1719 [==============================] - 7s 4ms/step - loss: 1.0077 - accuracy: 0.6585 - val_loss: 0.8663 - val_accuracy: 0.7020
Epoch 6/100
1719/1719 [==============================] - 8s 4ms/step - loss: 0.8910 - accuracy: 0.6855 - val_loss: 0.8173 - val_accuracy: 0.6992
Epoch 7/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.7930 - accuracy: 0.7046 - val_loss: 0.7331 - val_accuracy: 0.7186
Epoch 8/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.7249 - accuracy: 0.7163 - val_loss: 0.6725 - val_accuracy: 0.7344
Epoch 9/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.6603 - accuracy: 0.7391 - val_loss: 0.6464 - val_accuracy: 0.7504
Epoch 10/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.6401 - accuracy: 0.7479 - val_loss: 0.6380 - val_accuracy: 0.7712
Epoch 11/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.6071 - accuracy: 0.7760 - val_loss: 0.6173 - val_accuracy: 0.7810
Epoch 12/100
1719/1719 [==============================] - 8s 5ms/step - loss: 0.5792 - accuracy: 0.7928 - val_loss: 0.5478 - val_accuracy: 0.8060
Epoch 13/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.5654 - accuracy: 0.7957 - val_loss: 0.5678 - val_accuracy: 0.7952
Epoch 14/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.5420 - accuracy: 0.8031 - val_loss: 0.5327 - val_accuracy: 0.8104
Epoch 15/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.5179 - accuracy: 0.8092 - val_loss: 0.5385 - val_accuracy: 0.8170
Epoch 16/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.5203 - accuracy: 0.8109 - val_loss: 0.5016 - val_accuracy: 0.8182
Epoch 17/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4946 - accuracy: 0.8167 - val_loss: 0.5325 - val_accuracy: 0.8152
Epoch 18/100
1719/1719 [==============================] - 8s 4ms/step - loss: 0.5141 - accuracy: 0.8145 - val_loss: 0.5069 - val_accuracy: 0.8256
Epoch 19/100
1719/1719 [==============================] - 8s 4ms/step - loss: 0.4930 - accuracy: 0.8211 - val_loss: 0.4899 - val_accuracy: 0.8290
Epoch 20/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4973 - accuracy: 0.8205 - val_loss: 0.5007 - val_accuracy: 0.8262
Epoch 21/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4797 - accuracy: 0.8332 - val_loss: 0.5374 - val_accuracy: 0.8174
Epoch 22/100
1719/1719 [==============================] - 8s 4ms/step - loss: 0.4806 - accuracy: 0.8322 - val_loss: 0.5073 - val_accuracy: 0.8194
Epoch 23/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4972 - accuracy: 0.8181 - val_loss: 0.4662 - val_accuracy: 0.8338
Epoch 24/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4577 - accuracy: 0.8365 - val_loss: 0.5004 - val_accuracy: 0.8210
Epoch 25/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4699 - accuracy: 0.8340 - val_loss: 0.4765 - val_accuracy: 0.8382
Epoch 26/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4584 - accuracy: 0.8397 - val_loss: 0.5015 - val_accuracy: 0.8316
Epoch 27/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4853 - accuracy: 0.8330 - val_loss: 0.4862 - val_accuracy: 0.8344
Epoch 28/100
1719/1719 [==============================] - 7s 4ms/step - loss: 0.4573 - accuracy: 0.8443 - val_loss: 0.4857 - val_accuracy: 0.8364
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten (Flatten) (None, 784) 0
_________________________________________________________________
dense (Dense) (None, 10) 7850
_________________________________________________________________
dense_1 (Dense) (None, 10) 110
_________________________________________________________________
dense_2 (Dense) (None, 10) 110
_________________________________________________________________
dense_3 (Dense) (None, 10) 110
_________________________________________________________________
dense_4 (Dense) (None, 10) 110
_________________________________________________________________
dense_5 (Dense) (None, 10) 110
_________________________________________________________________
dense_6 (Dense) (None, 10) 110
_________________________________________________________________
dense_7 (Dense) (None, 10) 110
_________________________________________________________________
dense_8 (Dense) (None, 10) 110
_________________________________________________________________
dense_9 (Dense) (None, 10) 110
_________________________________________________________________
dense_10 (Dense) (None, 10) 110
_________________________________________________________________
dense_11 (Dense) (None, 10) 110
_________________________________________________________________
dense_12 (Dense) (None, 10) 110
_________________________________________________________________
dense_13 (Dense) (None, 10) 110
_________________________________________________________________
dense_14 (Dense) (None, 10) 110
_________________________________________________________________
dense_15 (Dense) (None, 10) 110
_________________________________________________________________
dense_16 (Dense) (None, 10) 110
_________________________________________________________________
dense_17 (Dense) (None, 10) 110
_________________________________________________________________
dense_18 (Dense) (None, 10) 110
_________________________________________________________________
dense_19 (Dense) (None, 10) 110
_________________________________________________________________
dense_20 (Dense) (None, 10) 110
=================================================================
Total params: 10,050
Trainable params: 10,050
Non-trainable params: 0
_________________________________________________________________
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 2)
plt.show()
plot_learning_curves(history)
2-10 实战批归一化
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
# 训练集拆分为训练集和验证集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
# 查看各数据集shape
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
## 数据归一化
# x = (x-u)/ std
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# x_train:[None, 28, 28] -> [None, 784]
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
# 输出归一化前后训练集的最大和最小值
print(np.max(x_train), np.min(x_train))
print(np.max(x_train_scaled), np.min(x_train_scaled))
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
for _ in range(20):
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.BatchNormalization())
"""
model.add(keras.layers.Dense(100))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu")
"""
model.add(keras.layers.Dense(10, activation="softmax"))
model.compile(loss="sparse_categorical_crossentropy",
optimizer="Adam",
metrics=["accuracy"])
# ------------------------------------------改------------------------------------
# 文件夹定义
logdir = "./dnn_bn_callbacks"
if not os.path.exists(logdir):
os.mkdir(logdir)
# 文件定义
output_model_file = os.path.join(logdir,
"fashion_mnist_model.h5")
callbacks = [
keras.callbacks.TensorBoard(logdir),
keras.callbacks.ModelCheckpoint(output_model_file,
save_best_only=True # 添加该参数,保存最好的模型,否则,保存最近的模型
),
# earlystopping(
# monitor= , # 关注指标,一般关注验证集目标函数的值
# min_delta= , # 阈值,本次训练和上次训练的差值与该值比较,如果低于该阈值,提前停止
# patience= , # 设置连续patience次差值低于min_delta,停止
# )
keras.callbacks.EarlyStopping(
patience = 5,
min_delta = 1e-3
)
]
# 训练模型
history = model.fit(x_train_scaled, y_train,
validation_data=(x_valid_scaled, y_valid),
epochs = 100,
callbacks=callbacks)
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 2)
plt.show()
plot_learning_curves(history)
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
255 0
2.0231433 -0.8105136
Epoch 1/100
1719/1719 [==============================] - 35s 18ms/step - loss: 1.5903 - accuracy: 0.4364 - val_loss: 0.6456 - val_accuracy: 0.7518
Epoch 2/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.7511 - accuracy: 0.7337 - val_loss: 0.4965 - val_accuracy: 0.8318
Epoch 3/100
1719/1719 [==============================] - 32s 18ms/step - loss: 0.6367 - accuracy: 0.7799 - val_loss: 0.4971 - val_accuracy: 0.8318
Epoch 4/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.5888 - accuracy: 0.8000 - val_loss: 0.5067 - val_accuracy: 0.8274
Epoch 5/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.5674 - accuracy: 0.8067 - val_loss: 0.5105 - val_accuracy: 0.8176
Epoch 6/100
1719/1719 [==============================] - 32s 18ms/step - loss: 0.5449 - accuracy: 0.8132 - val_loss: 0.4530 - val_accuracy: 0.8470
Epoch 7/100
1719/1719 [==============================] - 32s 19ms/step - loss: 0.5033 - accuracy: 0.8300 - val_loss: 0.4640 - val_accuracy: 0.8310
Epoch 8/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.4792 - accuracy: 0.8375 - val_loss: 0.4178 - val_accuracy: 0.8622
Epoch 9/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.4675 - accuracy: 0.8426 - val_loss: 0.4060 - val_accuracy: 0.8708
Epoch 10/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.4392 - accuracy: 0.8499 - val_loss: 0.3845 - val_accuracy: 0.8676
Epoch 11/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.4186 - accuracy: 0.8570 - val_loss: 0.3860 - val_accuracy: 0.8702
Epoch 12/100
1719/1719 [==============================] - 30s 17ms/step - loss: 0.4118 - accuracy: 0.8574 - val_loss: 0.3833 - val_accuracy: 0.8726
Epoch 13/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3956 - accuracy: 0.8631 - val_loss: 0.3827 - val_accuracy: 0.8630
Epoch 14/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3780 - accuracy: 0.8716 - val_loss: 0.3664 - val_accuracy: 0.8712
Epoch 15/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3709 - accuracy: 0.8733 - val_loss: 0.3624 - val_accuracy: 0.8780
Epoch 16/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3634 - accuracy: 0.8768 - val_loss: 0.3510 - val_accuracy: 0.8802
Epoch 17/100
1719/1719 [==============================] - 32s 18ms/step - loss: 0.3601 - accuracy: 0.8740 - val_loss: 0.3877 - val_accuracy: 0.8718
Epoch 18/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3421 - accuracy: 0.8799 - val_loss: 0.3802 - val_accuracy: 0.8688
Epoch 19/100
1719/1719 [==============================] - 30s 18ms/step - loss: 0.3471 - accuracy: 0.8804 - val_loss: 0.3373 - val_accuracy: 0.8754
Epoch 20/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3311 - accuracy: 0.8871 - val_loss: 0.3615 - val_accuracy: 0.8772
Epoch 21/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3230 - accuracy: 0.8894 - val_loss: 0.3563 - val_accuracy: 0.8846
Epoch 22/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3163 - accuracy: 0.8888 - val_loss: 0.3367 - val_accuracy: 0.8792
Epoch 23/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3094 - accuracy: 0.8909 - val_loss: 0.3592 - val_accuracy: 0.8702
Epoch 24/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.3076 - accuracy: 0.8917 - val_loss: 0.3198 - val_accuracy: 0.8910
Epoch 25/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.2984 - accuracy: 0.8962 - val_loss: 0.3445 - val_accuracy: 0.8850
Epoch 26/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.2942 - accuracy: 0.8959 - val_loss: 0.3296 - val_accuracy: 0.8840
Epoch 27/100
1719/1719 [==============================] - 32s 18ms/step - loss: 0.2919 - accuracy: 0.8999 - val_loss: 0.3410 - val_accuracy: 0.8818
Epoch 28/100
1719/1719 [==============================] - 30s 18ms/step - loss: 0.2892 - accuracy: 0.8994 - val_loss: 0.3381 - val_accuracy: 0.8826
Epoch 29/100
1719/1719 [==============================] - 31s 18ms/step - loss: 0.2875 - accuracy: 0.9008 - val_loss: 0.3229 - val_accuracy: 0.8816
2-11 Wide&Deep 模型
第3章 TF 基础API
基础API
基础API与keras的集成
- 自定义损失函数
- 自定义层次
@tffunction的使用
- 图结构
自定义求导
3-1 tf 基础API引入
@tf.function
- 将python函数编译成图
- 易于将模型导出成为GraphDef+checkpoint或者SavedModel
- 使得eager_execution可以默认打开
- 1.0的代码可以通过tf.function来继续在2.0里使用
- 替代session
API列表
- 基础数据类型
- Tf.constant,tf.string
- tf.ragged.constant,tf.SparseTensor,Tf.Variable
- 自定义损失函数——Tf.reduce_mean
- 自定义层次——Keras.layers.Lambda和继承法
- Tf.function
- Tf.function,tf.autograph.to_code,get_concrete_function
API列表
- GraphDef
- get_operations,get_operation_by_name
- get_tensor_by_name,as_graph_def
- 自动求导
- Tf.GradientTape
- Optimzier.apply_gradients
3-2实战tf.constant
# tf_basic_api
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
t =tf.constant([[1., 2., 3.],
[4., 5., 6.]])
print(t)
print(t[:, 1:])
print(t[..., 1])
tf.Tensor(
[[1. 2. 3.]
[4. 5. 6.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[2. 3.]
[5. 6.]], shape=(2, 2), dtype=float32)
tf.Tensor([2. 5.], shape=(2,), dtype=float32)
# op
print(t + 10)
print(tf.square(t))
print(t @ tf.transpose(t))
tf.Tensor(
[[11. 12. 13.]
[14. 15. 16.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[ 1. 4. 9.]
[16. 25. 36.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[14. 32.]
[32. 77.]], shape=(2, 2), dtype=float32)
# numpy conversion
print(t.numpy())
print(np.square(t))
np_t = np.array([[1., 2., 3.],
[4., 5., 6.]])
print(tf.constant(np_t))
[[1. 2. 3.]
[4. 5. 6.]]
[[ 1. 4. 9.]
[16. 25. 36.]]
tf.Tensor(
[[1. 2. 3.]
[4. 5. 6.]], shape=(2, 3), dtype=float64)
# Scalars
t = tf.constant(2.718)
print(t.numpy())
print(t.shape)
2.718
()
3-3 实战tf.strings与ragged tensor
# strings
t = tf.constant("cafe")
print(t)
print(tf.strings.length(t))
print(tf.strings.length(t, unit="UTF8_CHAR"))
print(tf.strings.unicode_decode(t, "UTF8"))
tf.Tensor(b'cafe', shape=(), dtype=string)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor([ 99 97 102 101], shape=(4,), dtype=int32)
# help(tf.strings.length)
# string array
t = tf.constant(["cafe", "coffee", "咖啡"])
print(tf.strings.length(t, unit="UTF8_CHAR"))
r = tf.strings.unicode_decode(t, "UTF8")
print(r)
tf.Tensor([4 6 2], shape=(3,), dtype=int32)
<tf.RaggedTensor [[99, 97, 102, 101], [99, 111, 102, 102, 101, 101], [21654, 21857]]>
不规则张量tf.RaggedTensor
# ragged tensor
r = tf.ragged.constant([[11, 12],
[21, 22, 23],
[],
[41]])
print(r)
print(r[1])
print(r[1:2])
<tf.RaggedTensor [[11, 12], [21, 22, 23], [], [41]]>
tf.Tensor([21 22 23], shape=(3,), dtype=int32)
<tf.RaggedTensor [[21, 22, 23]]>
# ops and ragged tensor
r2 = tf.ragged.constant([[51, 52],
[],
[71],
[81]])
print(tf.concat([r, r2], axis=0)) # 在行的方向拼接
<tf.RaggedTensor [[11, 12], [21, 22, 23], [], [41], [51, 52], [], [71], [81]]>
print(tf.concat([r, r2], axis=1)) # 在列的方向拼接, 行数不同时 报错
<tf.RaggedTensor [[11, 12, 51, 52], [21, 22, 23], [71], [41, 81]]>
print(r.to_tensor())
tf.Tensor(
[[11 12 0]
[21 22 23]
[ 0 0 0]
[41 0 0]], shape=(4, 3), dtype=int32)
3-4 实战sparse tensor与tf.Variable
# sparse tensor
# 大部分为零 少部分有值 记录值对应的坐标
s = tf.SparseTensor(indices=[[0, 1], [1, 0], [2 ,3]],
values=[1., 2., 3.],
dense_shape = [3, 4])
print(s)
print(tf.sparse.to_dense(s))
SparseTensor(indices=tf.Tensor(
[[0 1]
[1 0]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 1. 0. 0.]
[2. 0. 0. 0.]
[0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
# ops on sparse tensor
# 乘法
s2 = s * 2.0
print(s2)
# 加法
try:
s3 = s + 1
except TypeError as ex:
print(ex)
SparseTensor(indices=tf.Tensor(
[[0 1]
[1 0]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([2. 4. 6.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
unsupported operand type(s) for +: 'SparseTensor' and 'int'
s4 = tf.constant([[10., 20.],
[30., 40.],
[50., 60.],
[70., 80.]])
print(tf.sparse.sparse_dense_matmul(s, s4))
# 3 * 4 4 * 2 --> 3 * 2
tf.Tensor(
[[ 30. 40.]
[ 20. 40.]
[210. 240.]], shape=(3, 2), dtype=float32)
# sparse tensor
# 大部分为零 少部分有值 记录值对应的坐标, 定义是indices 必须是排好序的
s = tf.SparseTensor(indices=[[0, 2], [0, 1], [2 ,3]],
values=[1., 2., 3.],
dense_shape = [3, 4]) # 报错, 加order
print(s)
print(tf.sparse.to_dense(s))
SparseTensor(indices=tf.Tensor(
[[0 2]
[0 1]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-30-9827d8053682> in <module>()
6 dense_shape = [3, 4])
7 print(s)
----> 8 print(tf.sparse.to_dense(s))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/sparse_ops.py in sparse_tensor_to_dense(sp_input, default_value, validate_indices, name)
1647 default_value=default_value,
1648 validate_indices=validate_indices,
-> 1649 name=name)
1650
1651
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_sparse_ops.py in sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value, validate_indices, name)
3160 return _result
3161 except _core._NotOkStatusException as e:
-> 3162 _ops.raise_from_not_ok_status(e, name)
3163 except _core._FallbackException:
3164 pass
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name)
6860 message = e.message + (" name: " + name if name is not None else "")
6861 # pylint: disable=protected-access
-> 6862 six.raise_from(core._status_to_exception(e.code, message), None)
6863 # pylint: enable=protected-access
6864
/usr/local/lib/python3.6/dist-packages/six.py in raise_from(value, from_value)
InvalidArgumentError: indices[1] = [0,1] is out of order. Many sparse ops require sorted indices.
Use `tf.sparse.reorder` to create a correctly ordered copy.
[Op:SparseToDense]
# sparse tensor
# 大部分为零 少部分有值 记录值对应的坐标
s5 = tf.SparseTensor(indices=[[0, 2], [0, 1], [2 ,3]],
values=[1., 2., 3.],
dense_shape = [3, 4]) # 报错, 加reorder
print(s5)
s6 = tf.sparse.reorder(s5)
print(tf.sparse.to_dense(s6))
SparseTensor(indices=tf.Tensor(
[[0 2]
[0 1]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 2. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
变量
# variable
v = tf.Variable([[1., 2., 3.],
[4., 5., 6.]])
print(v)
print(v.value())
print(v.numpy())
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=
array([[1., 2., 3.],
[4., 5., 6.]], dtype=float32)>
tf.Tensor(
[[1. 2. 3.]
[4. 5. 6.]], shape=(2, 3), dtype=float32)
[[1. 2. 3.]
[4. 5. 6.]]
操作上和常量差不多 但是 变量可以重新被赋值
# assign value
v.assign(2*v)
print(v.numpy())
v[0, 1].assign(44)
print(v.numpy())
v[1].assign([7., 8., 9.])
print(v.numpy())
[[ 2. 4. 6.]
[ 8. 10. 12.]]
[[ 2. 44. 6.]
[ 8. 10. 12.]]
[[ 2. 44. 6.]
[ 7. 8. 9.]]
try:
v[1] = [7., 8., 9.]
except TypeError as ex:
print(ex)
'ResourceVariable' object does not support item assignment
3-5 实战自定义损失函数与DenseLayer回顾】
# tf_keras_regression_customized_loss
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
# 新数据集---房价预测
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
# print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)
(20640, 8)
(20640,)
from sklearn.model_selection import train_test_split
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state=7, test_size=0.25
) # 默认3:1的比例划分
x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all,
random_state=11)
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)
(11610, 8) (11610,)
(3870, 8) (3870,)
(5160, 8) (5160,)
# 归一化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
# 获取训练集的均值和方差, 在测试集和验证集上都用和训练集一样的均值和方差
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)
# 搭建模型
model = keras.models.Sequential([
keras.layers.Dense(30, activation="relu",
input_shape=x_train.shape[1:]), # 8
keras.layers.Dense(1),
])
# 自定义实现 loss
def customized_mse(y_true, y_pred):
return tf.reduce_mean(tf.square(y_pred - y_true))
model.summary() # model 信息
model.compile(loss=customized_mse, optimizer="sgd",
metrics=["mean_squared_error"]) # 编译model, 设置损失函数和优化方法
callbacks = [keras.callbacks.EarlyStopping(
patience=5, min_delta=1e-3
)]
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 30) 270
_________________________________________________________________
dense_5 (Dense) (None, 1) 31
=================================================================
Total params: 301
Trainable params: 301
Non-trainable params: 0
_________________________________________________________________
# 训练模型
history = model.fit(x_train_scaled, y_train,
validation_data=(x_valid_scaled, y_valid),
epochs = 100,
callbacks=callbacks)
Epoch 1/100
363/363 [==============================] - 1s 2ms/step - loss: 1.4005 - mean_squared_error: 1.4005 - val_loss: 0.8243 - val_mean_squared_error: 0.8243
Epoch 2/100
363/363 [==============================] - 1s 2ms/step - loss: 0.5414 - mean_squared_error: 0.5414 - val_loss: 0.4819 - val_mean_squared_error: 0.4819
Epoch 3/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4678 - mean_squared_error: 0.4678 - val_loss: 0.4576 - val_mean_squared_error: 0.4576
Epoch 4/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4356 - mean_squared_error: 0.4356 - val_loss: 0.4384 - val_mean_squared_error: 0.4384
Epoch 5/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4149 - mean_squared_error: 0.4149 - val_loss: 0.4267 - val_mean_squared_error: 0.4267
Epoch 6/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3944 - mean_squared_error: 0.3944 - val_loss: 0.4151 - val_mean_squared_error: 0.4151
Epoch 7/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4057 - mean_squared_error: 0.4057 - val_loss: 0.4081 - val_mean_squared_error: 0.4081
Epoch 8/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3853 - mean_squared_error: 0.3853 - val_loss: 0.4026 - val_mean_squared_error: 0.4026
Epoch 9/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4058 - mean_squared_error: 0.4058 - val_loss: 0.3977 - val_mean_squared_error: 0.3977
Epoch 10/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3763 - mean_squared_error: 0.3763 - val_loss: 0.4614 - val_mean_squared_error: 0.4614
Epoch 11/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3790 - mean_squared_error: 0.3790 - val_loss: 0.3895 - val_mean_squared_error: 0.3895
Epoch 12/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3818 - mean_squared_error: 0.3818 - val_loss: 0.3892 - val_mean_squared_error: 0.3892
Epoch 13/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3694 - mean_squared_error: 0.3694 - val_loss: 0.3885 - val_mean_squared_error: 0.3885
Epoch 14/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3850 - mean_squared_error: 0.3850 - val_loss: 4.0212 - val_mean_squared_error: 4.0212
Epoch 15/100
363/363 [==============================] - 1s 2ms/step - loss: 1.3281 - mean_squared_error: 1.3281 - val_loss: 0.4364 - val_mean_squared_error: 0.4364
Epoch 16/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4003 - mean_squared_error: 0.4003 - val_loss: 0.4188 - val_mean_squared_error: 0.4188
Epoch 17/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4221 - mean_squared_error: 0.4221 - val_loss: 0.4053 - val_mean_squared_error: 0.4053
Epoch 18/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3889 - mean_squared_error: 0.3889 - val_loss: 0.3960 - val_mean_squared_error: 0.3960
tf_keras_regression_customized_layer
layer = tf.keras.layers.Dense(100)
layer = tf.keras.layers.Dense(100, input_shape=(None, 5))
layer(tf.zeros([10, 5]))
<tf.Tensor: shape=(10, 100), dtype=float32, numpy=
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.]], dtype=float32)>
layer.variables
[<tf.Variable 'dense_13/kernel:0' shape=(5, 100) dtype=float32, numpy=
array([[ 1.17993578e-01, -1.56830609e-01, -1.68948278e-01,
-1.82192534e-01, 6.65033609e-02, -1.16530903e-01,
-1.95161447e-01, 1.63546160e-01, -3.72667760e-02,
-2.11995542e-02, 6.36704713e-02, -1.72894925e-01,
1.50540575e-01, -9.82312113e-02, -1.02308378e-01,
4.88599390e-02, 2.24954262e-01, -3.72949243e-02,
-6.01941198e-02, -8.99997205e-02, -4.77534682e-02,
-5.69917411e-02, 1.30270258e-01, -1.73452944e-02,
-1.83161646e-02, -2.14328170e-02, 3.06069851e-03,
2.37779632e-01, -2.07491070e-01, 8.40653330e-02,
1.27209827e-01, -4.37220931e-03, -1.95200533e-01,
-2.04393506e-01, -4.98728454e-03, 1.86599448e-01,
-1.35822102e-01, -5.09840548e-02, -1.41907871e-01,
7.33199269e-02, 1.16105333e-01, 7.80275017e-02,
1.39858052e-01, 4.97041196e-02, -1.35599136e-01,
2.15787813e-01, -6.73650205e-03, -1.62299246e-01,
-1.10671803e-01, -4.88808006e-02, 2.31273606e-01,
1.50902942e-01, -1.73787475e-02, -1.44821286e-01,
5.45063466e-02, 1.29491672e-01, -1.95474163e-01,
-9.48164761e-02, -1.92742497e-01, -1.07271940e-01,
8.99470598e-02, -1.46985203e-01, 2.34416828e-01,
-1.50809363e-01, -8.69280249e-02, 1.96190968e-01,
-1.76819354e-01, -2.16299266e-01, 2.18500644e-02,
1.97046891e-01, 7.25797564e-02, -8.77934098e-02,
1.75517634e-01, -3.91519219e-02, -2.15126351e-01,
1.78521171e-01, 2.13996023e-02, -2.22161174e-01,
5.66680878e-02, 2.03519017e-02, 9.29586738e-02,
-2.26843029e-01, 1.87522843e-01, -3.30755711e-02,
3.09066474e-03, 5.06575555e-02, -8.58460814e-02,
-1.94824383e-01, -1.42128766e-01, 1.60556123e-01,
1.36067107e-01, -3.94089669e-02, 1.44759908e-01,
1.82055071e-01, -2.00239629e-01, 2.06142664e-04,
-6.84306324e-02, 9.27842110e-02, -1.89147264e-01,
5.41335493e-02],
[-2.35774666e-01, 1.62306562e-01, -1.44630760e-01,
-8.45796913e-02, -8.72821212e-02, 2.13336393e-01,
-2.05078036e-01, -2.36002699e-01, 1.14917606e-02,
-8.91554207e-02, -3.06088030e-02, -3.10562551e-02,
1.59979239e-01, -2.04142958e-01, 2.33666494e-01,
-2.12851822e-01, -1.70270622e-01, 2.00299934e-01,
2.05543056e-01, -1.55235946e-01, -2.28202820e-01,
2.17619970e-01, 2.18072161e-01, 1.95354074e-02,
-1.49654686e-01, -1.23770259e-01, 6.42647892e-02,
-1.08850196e-01, 9.67449993e-02, -8.77622366e-02,
-1.59778982e-01, 2.36193791e-01, -6.45806938e-02,
-2.33155161e-01, 2.21592590e-01, 3.21660191e-02,
-1.54520422e-02, 1.38404980e-01, 1.87509850e-01,
-1.02676094e-01, -4.30940092e-02, 6.22577816e-02,
6.93489462e-02, -6.09517097e-03, 8.23376328e-02,
1.77095875e-01, 3.80660444e-02, 1.94630966e-01,
2.13605389e-01, 5.98717183e-02, 1.16292104e-01,
1.80968598e-01, 8.10724050e-02, 1.64164022e-01,
-2.13646024e-01, -1.89710647e-01, -7.94855505e-02,
-2.09293514e-02, -2.83155143e-02, 5.62551767e-02,
2.36149564e-01, 1.81217536e-01, -1.16601914e-01,
8.40740353e-02, 2.16404483e-01, 1.83589146e-01,
-1.59670919e-01, 1.21718511e-01, -9.71012712e-02,
-1.50169045e-01, 6.36996478e-02, -6.35278672e-02,
-1.94793671e-01, 3.13182026e-02, 1.83542356e-01,
5.53140491e-02, -2.05091044e-01, 2.21068114e-02,
-1.81381866e-01, 6.48529977e-02, 2.29394928e-01,
-1.72381476e-01, 4.47730273e-02, 8.43436271e-02,
-3.61360312e-02, 6.97026402e-02, -2.35724866e-01,
-7.47385472e-02, -1.06989443e-02, -2.08874524e-01,
2.18377754e-01, 4.11485583e-02, 1.33517995e-01,
-2.23670855e-01, 1.06577322e-01, 7.57554322e-02,
2.27842227e-01, 2.28776678e-01, -2.28846490e-01,
1.96350500e-01],
[-1.80571258e-01, -1.31611973e-01, -1.23560011e-01,
-7.25644827e-03, 1.68194845e-01, 6.39882535e-02,
6.49448186e-02, -1.11236885e-01, 1.77815989e-01,
-1.61307067e-01, -1.19757392e-01, -7.55182654e-02,
2.20785186e-01, 1.58575580e-01, -6.70485497e-02,
-2.44060904e-02, -1.02572650e-01, 9.91210490e-02,
-1.15951687e-01, 2.29302540e-01, 8.92989784e-02,
-2.97219902e-02, 1.64928883e-02, 7.41528422e-02,
-4.58508730e-03, 4.78822142e-02, 1.90612510e-01,
-1.20980740e-01, -1.25501931e-01, -9.63088870e-03,
-1.38515472e-01, -3.43029052e-02, 1.24467507e-01,
-2.04019919e-01, -1.58125103e-01, 1.12259522e-01,
-8.98374617e-03, -5.39632589e-02, 1.38579264e-01,
1.14018604e-01, -2.27418706e-01, -1.87457830e-01,
-3.28620225e-02, 1.46933049e-02, 1.15428194e-01,
1.17602482e-01, 2.14431331e-01, -2.33065113e-01,
1.73265323e-01, -2.32133225e-01, -4.83830720e-02,
-1.78886086e-01, -7.13968277e-02, -9.14449543e-02,
7.23969489e-02, 2.16047019e-02, -1.33315265e-01,
-1.70755699e-01, 1.27966836e-01, 8.60891491e-02,
-1.82814598e-01, -1.57531857e-01, -1.55951619e-01,
-1.41447648e-01, 1.39176831e-01, -5.84817082e-02,
2.34167427e-02, 1.52700737e-01, 1.73719719e-01,
-9.27354395e-03, 1.23508707e-01, -2.09955722e-01,
-1.92015380e-01, -1.34306997e-01, 1.66582316e-02,
5.39450794e-02, -1.93378761e-01, 1.74318030e-01,
2.04276726e-01, 1.46198407e-01, -5.38525730e-02,
1.60146400e-01, 4.74558622e-02, -1.20019168e-02,
8.51270407e-02, -2.31632307e-01, 1.99092522e-01,
-1.06971711e-02, -1.39157385e-01, -5.24209440e-03,
-2.29086205e-01, -1.57549918e-01, -8.20409954e-02,
-1.32332414e-01, -7.42692649e-02, -1.26496121e-01,
-8.07453245e-02, 1.90312937e-01, -2.31800556e-01,
7.24865943e-02],
[-2.38251865e-01, -8.11809748e-02, -1.37726456e-01,
-1.83995217e-01, 8.50348324e-02, 1.09083399e-01,
-9.14118886e-02, -1.49630919e-01, -1.63562000e-01,
-1.64833844e-01, 1.30269751e-01, -1.89413071e-01,
2.07567438e-01, -1.62040338e-01, 1.83953390e-01,
2.37112477e-01, -6.06615841e-03, -3.92208397e-02,
1.96731701e-01, 2.31520727e-01, 1.60958663e-01,
7.02184886e-02, 5.88749200e-02, 1.82619542e-02,
-1.63384855e-01, 1.02474988e-02, 2.17420712e-01,
-1.44961655e-01, -2.28492171e-02, -5.26894629e-02,
7.99415559e-02, -1.84868455e-01, 1.62348434e-01,
1.73505023e-01, 1.00375012e-01, -1.58093065e-01,
6.42622262e-02, -2.37627506e-01, 2.25016460e-01,
2.12048039e-01, -9.22474116e-02, 1.91477999e-01,
1.17883161e-01, -3.78689617e-02, -9.79572535e-03,
1.36944205e-02, -1.98942423e-02, -9.28505063e-02,
-7.69308954e-02, -2.62513459e-02, -2.00397670e-01,
6.66552335e-02, -2.25662813e-01, -1.69921950e-01,
1.39344946e-01, -7.63480812e-02, 7.96660930e-02,
-1.55795783e-01, -1.60507798e-01, 1.19389847e-01,
1.02434680e-01, -2.25314021e-01, -2.31452614e-01,
-1.20137990e-01, 6.83608800e-02, 9.86010283e-02,
-1.89073458e-01, -2.05998704e-01, 7.78703243e-02,
2.14689508e-01, -1.34084448e-01, -1.57677472e-01,
2.91350335e-02, 1.68535188e-01, -1.82089433e-01,
1.78327605e-01, 8.48407894e-02, -2.09998935e-01,
2.70417184e-02, 1.46897361e-01, -9.30094570e-02,
-9.73228067e-02, 1.46372929e-01, -1.51964039e-01,
-1.68384731e-01, -2.12973908e-01, 2.20886931e-01,
-1.92470863e-01, 7.41604716e-02, -6.24230653e-02,
-2.22013846e-01, -2.22155869e-01, 2.05529436e-01,
-4.03873622e-02, 2.18250945e-01, 1.45619407e-01,
6.55782372e-02, 2.90372223e-02, -7.39094764e-02,
2.33842507e-01],
[-3.21059525e-02, -2.31029272e-01, -7.09910989e-02,
-1.42410144e-01, -2.38033593e-01, 1.03846192e-04,
1.43522993e-01, 1.84639975e-01, -1.14365458e-01,
-1.46784991e-01, 7.51944333e-02, 1.45526960e-01,
1.94465563e-01, 1.27261981e-01, 2.14170590e-01,
-2.32892483e-01, 1.89018622e-01, 1.28891185e-01,
-9.46170092e-02, -1.20265312e-01, 5.48033863e-02,
1.21932521e-01, 9.82101113e-02, -1.54365391e-01,
2.25261077e-01, 8.98155719e-02, -1.74374431e-02,
2.40292400e-02, -1.73144549e-01, 1.07187942e-01,
-6.28392845e-02, -6.04035109e-02, -2.25900114e-02,
-2.07246631e-01, 3.58460397e-02, 1.73451409e-01,
-2.97844410e-04, -2.09331259e-01, 1.97884634e-01,
-3.29386741e-02, -2.04553649e-01, -1.17815696e-01,
8.26779455e-02, 6.88602477e-02, -2.07942799e-01,
6.44993037e-02, 2.22308889e-01, 1.84164539e-01,
1.41484395e-01, -1.78974763e-01, -1.72387511e-01,
2.00336799e-01, -1.69618338e-01, -1.97233930e-01,
2.36409739e-01, 8.74768645e-02, -3.40589881e-03,
-3.98442745e-02, -2.22937524e-01, -2.34544247e-01,
1.20113596e-01, -1.76493973e-02, -5.34559786e-03,
1.50108486e-02, -4.26822454e-02, -1.42341807e-01,
4.99777347e-02, 1.44065902e-01, -2.24418148e-01,
-1.34305060e-02, -2.15131775e-01, 2.36514106e-01,
-1.04367465e-01, -3.85250002e-02, 3.09597105e-02,
-2.15378776e-01, 1.44013315e-02, -9.90413129e-02,
1.30114406e-02, 2.33711973e-01, 1.99497864e-01,
2.61102766e-02, -1.42305970e-01, 8.29340070e-02,
1.37307495e-02, -1.73510849e-01, 8.05871636e-02,
1.65648311e-02, 2.38432735e-02, 1.03347406e-01,
1.21760681e-01, 2.23188981e-01, 1.13190249e-01,
1.19871601e-01, -6.25639409e-02, -1.89669833e-01,
3.46633345e-02, -1.13988906e-01, 4.01383489e-02,
2.32083932e-01]], dtype=float32)>,
<tf.Variable 'dense_13/bias:0' shape=(100,) dtype=float32, numpy=
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
dtype=float32)>]
layer.trainable_variables
[<tf.Variable 'dense_13/kernel:0' shape=(5, 100) dtype=float32, numpy=
array([[ 1.17993578e-01, -1.56830609e-01, -1.68948278e-01,
-1.82192534e-01, 6.65033609e-02, -1.16530903e-01,
-1.95161447e-01, 1.63546160e-01, -3.72667760e-02,
-2.11995542e-02, 6.36704713e-02, -1.72894925e-01,
1.50540575e-01, -9.82312113e-02, -1.02308378e-01,
4.88599390e-02, 2.24954262e-01, -3.72949243e-02,
-6.01941198e-02, -8.99997205e-02, -4.77534682e-02,
-5.69917411e-02, 1.30270258e-01, -1.73452944e-02,
-1.83161646e-02, -2.14328170e-02, 3.06069851e-03,
2.37779632e-01, -2.07491070e-01, 8.40653330e-02,
1.27209827e-01, -4.37220931e-03, -1.95200533e-01,
-2.04393506e-01, -4.98728454e-03, 1.86599448e-01,
-1.35822102e-01, -5.09840548e-02, -1.41907871e-01,
7.33199269e-02, 1.16105333e-01, 7.80275017e-02,
1.39858052e-01, 4.97041196e-02, -1.35599136e-01,
2.15787813e-01, -6.73650205e-03, -1.62299246e-01,
-1.10671803e-01, -4.88808006e-02, 2.31273606e-01,
1.50902942e-01, -1.73787475e-02, -1.44821286e-01,
5.45063466e-02, 1.29491672e-01, -1.95474163e-01,
-9.48164761e-02, -1.92742497e-01, -1.07271940e-01,
8.99470598e-02, -1.46985203e-01, 2.34416828e-01,
-1.50809363e-01, -8.69280249e-02, 1.96190968e-01,
-1.76819354e-01, -2.16299266e-01, 2.18500644e-02,
1.97046891e-01, 7.25797564e-02, -8.77934098e-02,
1.75517634e-01, -3.91519219e-02, -2.15126351e-01,
1.78521171e-01, 2.13996023e-02, -2.22161174e-01,
5.66680878e-02, 2.03519017e-02, 9.29586738e-02,
-2.26843029e-01, 1.87522843e-01, -3.30755711e-02,
3.09066474e-03, 5.06575555e-02, -8.58460814e-02,
-1.94824383e-01, -1.42128766e-01, 1.60556123e-01,
1.36067107e-01, -3.94089669e-02, 1.44759908e-01,
1.82055071e-01, -2.00239629e-01, 2.06142664e-04,
-6.84306324e-02, 9.27842110e-02, -1.89147264e-01,
5.41335493e-02],
[-2.35774666e-01, 1.62306562e-01, -1.44630760e-01,
-8.45796913e-02, -8.72821212e-02, 2.13336393e-01,
-2.05078036e-01, -2.36002699e-01, 1.14917606e-02,
-8.91554207e-02, -3.06088030e-02, -3.10562551e-02,
1.59979239e-01, -2.04142958e-01, 2.33666494e-01,
-2.12851822e-01, -1.70270622e-01, 2.00299934e-01,
2.05543056e-01, -1.55235946e-01, -2.28202820e-01,
2.17619970e-01, 2.18072161e-01, 1.95354074e-02,
-1.49654686e-01, -1.23770259e-01, 6.42647892e-02,
-1.08850196e-01, 9.67449993e-02, -8.77622366e-02,
-1.59778982e-01, 2.36193791e-01, -6.45806938e-02,
-2.33155161e-01, 2.21592590e-01, 3.21660191e-02,
-1.54520422e-02, 1.38404980e-01, 1.87509850e-01,
-1.02676094e-01, -4.30940092e-02, 6.22577816e-02,
6.93489462e-02, -6.09517097e-03, 8.23376328e-02,
1.77095875e-01, 3.80660444e-02, 1.94630966e-01,
2.13605389e-01, 5.98717183e-02, 1.16292104e-01,
1.80968598e-01, 8.10724050e-02, 1.64164022e-01,
-2.13646024e-01, -1.89710647e-01, -7.94855505e-02,
-2.09293514e-02, -2.83155143e-02, 5.62551767e-02,
2.36149564e-01, 1.81217536e-01, -1.16601914e-01,
8.40740353e-02, 2.16404483e-01, 1.83589146e-01,
-1.59670919e-01, 1.21718511e-01, -9.71012712e-02,
-1.50169045e-01, 6.36996478e-02, -6.35278672e-02,
-1.94793671e-01, 3.13182026e-02, 1.83542356e-01,
5.53140491e-02, -2.05091044e-01, 2.21068114e-02,
-1.81381866e-01, 6.48529977e-02, 2.29394928e-01,
-1.72381476e-01, 4.47730273e-02, 8.43436271e-02,
-3.61360312e-02, 6.97026402e-02, -2.35724866e-01,
-7.47385472e-02, -1.06989443e-02, -2.08874524e-01,
2.18377754e-01, 4.11485583e-02, 1.33517995e-01,
-2.23670855e-01, 1.06577322e-01, 7.57554322e-02,
2.27842227e-01, 2.28776678e-01, -2.28846490e-01,
1.96350500e-01],
[-1.80571258e-01, -1.31611973e-01, -1.23560011e-01,
-7.25644827e-03, 1.68194845e-01, 6.39882535e-02,
6.49448186e-02, -1.11236885e-01, 1.77815989e-01,
-1.61307067e-01, -1.19757392e-01, -7.55182654e-02,
2.20785186e-01, 1.58575580e-01, -6.70485497e-02,
-2.44060904e-02, -1.02572650e-01, 9.91210490e-02,
-1.15951687e-01, 2.29302540e-01, 8.92989784e-02,
-2.97219902e-02, 1.64928883e-02, 7.41528422e-02,
-4.58508730e-03, 4.78822142e-02, 1.90612510e-01,
-1.20980740e-01, -1.25501931e-01, -9.63088870e-03,
-1.38515472e-01, -3.43029052e-02, 1.24467507e-01,
-2.04019919e-01, -1.58125103e-01, 1.12259522e-01,
-8.98374617e-03, -5.39632589e-02, 1.38579264e-01,
1.14018604e-01, -2.27418706e-01, -1.87457830e-01,
-3.28620225e-02, 1.46933049e-02, 1.15428194e-01,
1.17602482e-01, 2.14431331e-01, -2.33065113e-01,
1.73265323e-01, -2.32133225e-01, -4.83830720e-02,
-1.78886086e-01, -7.13968277e-02, -9.14449543e-02,
7.23969489e-02, 2.16047019e-02, -1.33315265e-01,
-1.70755699e-01, 1.27966836e-01, 8.60891491e-02,
-1.82814598e-01, -1.57531857e-01, -1.55951619e-01,
-1.41447648e-01, 1.39176831e-01, -5.84817082e-02,
2.34167427e-02, 1.52700737e-01, 1.73719719e-01,
-9.27354395e-03, 1.23508707e-01, -2.09955722e-01,
-1.92015380e-01, -1.34306997e-01, 1.66582316e-02,
5.39450794e-02, -1.93378761e-01, 1.74318030e-01,
2.04276726e-01, 1.46198407e-01, -5.38525730e-02,
1.60146400e-01, 4.74558622e-02, -1.20019168e-02,
8.51270407e-02, -2.31632307e-01, 1.99092522e-01,
-1.06971711e-02, -1.39157385e-01, -5.24209440e-03,
-2.29086205e-01, -1.57549918e-01, -8.20409954e-02,
-1.32332414e-01, -7.42692649e-02, -1.26496121e-01,
-8.07453245e-02, 1.90312937e-01, -2.31800556e-01,
7.24865943e-02],
[-2.38251865e-01, -8.11809748e-02, -1.37726456e-01,
-1.83995217e-01, 8.50348324e-02, 1.09083399e-01,
-9.14118886e-02, -1.49630919e-01, -1.63562000e-01,
-1.64833844e-01, 1.30269751e-01, -1.89413071e-01,
2.07567438e-01, -1.62040338e-01, 1.83953390e-01,
2.37112477e-01, -6.06615841e-03, -3.92208397e-02,
1.96731701e-01, 2.31520727e-01, 1.60958663e-01,
7.02184886e-02, 5.88749200e-02, 1.82619542e-02,
-1.63384855e-01, 1.02474988e-02, 2.17420712e-01,
-1.44961655e-01, -2.28492171e-02, -5.26894629e-02,
7.99415559e-02, -1.84868455e-01, 1.62348434e-01,
1.73505023e-01, 1.00375012e-01, -1.58093065e-01,
6.42622262e-02, -2.37627506e-01, 2.25016460e-01,
2.12048039e-01, -9.22474116e-02, 1.91477999e-01,
1.17883161e-01, -3.78689617e-02, -9.79572535e-03,
1.36944205e-02, -1.98942423e-02, -9.28505063e-02,
-7.69308954e-02, -2.62513459e-02, -2.00397670e-01,
6.66552335e-02, -2.25662813e-01, -1.69921950e-01,
1.39344946e-01, -7.63480812e-02, 7.96660930e-02,
-1.55795783e-01, -1.60507798e-01, 1.19389847e-01,
1.02434680e-01, -2.25314021e-01, -2.31452614e-01,
-1.20137990e-01, 6.83608800e-02, 9.86010283e-02,
-1.89073458e-01, -2.05998704e-01, 7.78703243e-02,
2.14689508e-01, -1.34084448e-01, -1.57677472e-01,
2.91350335e-02, 1.68535188e-01, -1.82089433e-01,
1.78327605e-01, 8.48407894e-02, -2.09998935e-01,
2.70417184e-02, 1.46897361e-01, -9.30094570e-02,
-9.73228067e-02, 1.46372929e-01, -1.51964039e-01,
-1.68384731e-01, -2.12973908e-01, 2.20886931e-01,
-1.92470863e-01, 7.41604716e-02, -6.24230653e-02,
-2.22013846e-01, -2.22155869e-01, 2.05529436e-01,
-4.03873622e-02, 2.18250945e-01, 1.45619407e-01,
6.55782372e-02, 2.90372223e-02, -7.39094764e-02,
2.33842507e-01],
[-3.21059525e-02, -2.31029272e-01, -7.09910989e-02,
-1.42410144e-01, -2.38033593e-01, 1.03846192e-04,
1.43522993e-01, 1.84639975e-01, -1.14365458e-01,
-1.46784991e-01, 7.51944333e-02, 1.45526960e-01,
1.94465563e-01, 1.27261981e-01, 2.14170590e-01,
-2.32892483e-01, 1.89018622e-01, 1.28891185e-01,
-9.46170092e-02, -1.20265312e-01, 5.48033863e-02,
1.21932521e-01, 9.82101113e-02, -1.54365391e-01,
2.25261077e-01, 8.98155719e-02, -1.74374431e-02,
2.40292400e-02, -1.73144549e-01, 1.07187942e-01,
-6.28392845e-02, -6.04035109e-02, -2.25900114e-02,
-2.07246631e-01, 3.58460397e-02, 1.73451409e-01,
-2.97844410e-04, -2.09331259e-01, 1.97884634e-01,
-3.29386741e-02, -2.04553649e-01, -1.17815696e-01,
8.26779455e-02, 6.88602477e-02, -2.07942799e-01,
6.44993037e-02, 2.22308889e-01, 1.84164539e-01,
1.41484395e-01, -1.78974763e-01, -1.72387511e-01,
2.00336799e-01, -1.69618338e-01, -1.97233930e-01,
2.36409739e-01, 8.74768645e-02, -3.40589881e-03,
-3.98442745e-02, -2.22937524e-01, -2.34544247e-01,
1.20113596e-01, -1.76493973e-02, -5.34559786e-03,
1.50108486e-02, -4.26822454e-02, -1.42341807e-01,
4.99777347e-02, 1.44065902e-01, -2.24418148e-01,
-1.34305060e-02, -2.15131775e-01, 2.36514106e-01,
-1.04367465e-01, -3.85250002e-02, 3.09597105e-02,
-2.15378776e-01, 1.44013315e-02, -9.90413129e-02,
1.30114406e-02, 2.33711973e-01, 1.99497864e-01,
2.61102766e-02, -1.42305970e-01, 8.29340070e-02,
1.37307495e-02, -1.73510849e-01, 8.05871636e-02,
1.65648311e-02, 2.38432735e-02, 1.03347406e-01,
1.21760681e-01, 2.23188981e-01, 1.13190249e-01,
1.19871601e-01, -6.25639409e-02, -1.89669833e-01,
3.46633345e-02, -1.13988906e-01, 4.01383489e-02,
2.32083932e-01]], dtype=float32)>,
<tf.Variable 'dense_13/bias:0' shape=(100,) dtype=float32, numpy=
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
dtype=float32)>]
3-6 使子类与lambda分别实战自定义层次(上)
# tf_keras_regression_customized_loss
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
# 新数据集---房价预测
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
from sklearn.model_selection import train_test_split
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state=7, test_size=0.25
) # 默认3:1的比例划分
x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all,
random_state=11)
# 归一化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
# 获取训练集的均值和方差, 在测试集和验证集上都用和训练集一样的均值和方差
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)
# 自定义 Dense layer
class CustomizedDenseLayer(keras.layers.Layer):
def __init__(self, units, activation=None, **kwargs):
self.units = units
self.activation = keras.layers.Activation(activation)
super(CustomizedDenseLayer, self).__init__(**kwargs) # 继承父类
def build(self, input_shape):
"""构建所需要的的参数"""
# x*w+b, x_input_shape:[None, a] w: [a, b] output_shape: [None, b]
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.units),
initializer='uniform',
trainable=True)
self.bias = self.add_weight(name="bias",
shape=(self.units,),
initializer='zeros',
trainable=True)
super(CustomizedDenseLayer, self).build(input_shape)
def call(self, x):
"""完成正向计算"""
return self.activation(x @ self.kernel + self.bias)
# 搭建模型
model = keras.models.Sequential([
# 使用自定义模型
CustomizedDenseLayer(30, activation="relu",
input_shape=x_train.shape[1:]), # 8
CustomizedDenseLayer(1),
])
# 自定义实现 loss
def customized_mse(y_true, y_pred):
return tf.reduce_mean(tf.square(y_pred - y_true))
model.summary() # model 信息
model.compile(loss="mean_squared_error", optimizer="sgd",
# metrics=["mean_squared_error"]
) # 编译model, 设置损失函数和优化方法
callbacks = [keras.callbacks.EarlyStopping(
patience=5, min_delta=1e-3
)]
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
customized_dense_layer_2 (Cu (None, 30) 270
_________________________________________________________________
customized_dense_layer_3 (Cu (None, 1) 31
=================================================================
Total params: 301
Trainable params: 301
Non-trainable params: 0
_________________________________________________________________
# 训练模型
history = model.fit(x_train_scaled, y_train,
validation_data=(x_valid_scaled, y_valid),
epochs = 100,
callbacks=callbacks)
Epoch 1/100
363/363 [==============================] - 1s 2ms/step - loss: 1.9831 - val_loss: 0.6361
Epoch 2/100
363/363 [==============================] - 1s 2ms/step - loss: 0.5850 - val_loss: 0.5458
Epoch 3/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4969 - val_loss: 0.4914
Epoch 4/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4590 - val_loss: 0.4655
Epoch 5/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4769 - val_loss: 0.4931
Epoch 6/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4545 - val_loss: 0.4539
Epoch 7/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4269 - val_loss: 0.4403
Epoch 8/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4318 - val_loss: 0.4405
Epoch 9/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4151 - val_loss: 0.4258
Epoch 10/100
363/363 [==============================] - 1s 2ms/step - loss: 0.4172 - val_loss: 0.4235
Epoch 11/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3940 - val_loss: 0.4142
Epoch 12/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3901 - val_loss: 0.4146
Epoch 13/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3998 - val_loss: 0.4065
Epoch 14/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3919 - val_loss: 0.4095
Epoch 15/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3834 - val_loss: 0.4207
Epoch 16/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3896 - val_loss: 0.4005
Epoch 17/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3946 - val_loss: 0.4030
Epoch 18/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3801 - val_loss: 0.3948
Epoch 19/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3827 - val_loss: 0.3895
Epoch 20/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3800 - val_loss: 0.3902
Epoch 21/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3633 - val_loss: 0.3872
Epoch 22/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3735 - val_loss: 0.3972
Epoch 23/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3738 - val_loss: 0.3869
Epoch 24/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3586 - val_loss: 0.3856
Epoch 25/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3814 - val_loss: 0.3863
Epoch 26/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3847 - val_loss: 0.3786
Epoch 27/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3739 - val_loss: 0.3873
Epoch 28/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3533 - val_loss: 0.3825
Epoch 29/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3687 - val_loss: 0.3789
Epoch 30/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3562 - val_loss: 0.3709
Epoch 31/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3634 - val_loss: 0.3731
Epoch 32/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3540 - val_loss: 0.3733
Epoch 33/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3695 - val_loss: 0.3691
Epoch 34/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3617 - val_loss: 0.3683
Epoch 35/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3590 - val_loss: 0.3680
Epoch 36/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3552 - val_loss: 0.3677
Epoch 37/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3615 - val_loss: 0.3633
Epoch 38/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3575 - val_loss: 0.3713
Epoch 39/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3507 - val_loss: 0.3628
Epoch 40/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3616 - val_loss: 0.3602
Epoch 41/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3494 - val_loss: 0.3587
Epoch 42/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3450 - val_loss: 0.3582
Epoch 43/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3341 - val_loss: 0.3628
Epoch 44/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3453 - val_loss: 0.3559
Epoch 45/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3407 - val_loss: 0.3568
Epoch 46/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3479 - val_loss: 0.3579
Epoch 47/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3447 - val_loss: 0.3535
Epoch 48/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3625 - val_loss: 0.3585
Epoch 49/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3438 - val_loss: 0.3572
Epoch 50/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3450 - val_loss: 0.3520
Epoch 51/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3386 - val_loss: 0.3530
Epoch 52/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3554 - val_loss: 0.3494
Epoch 53/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3391 - val_loss: 0.3469
Epoch 54/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3333 - val_loss: 0.3488
Epoch 55/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3352 - val_loss: 0.3556
Epoch 56/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3308 - val_loss: 0.3467
Epoch 57/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3416 - val_loss: 0.3530
Epoch 58/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3401 - val_loss: 0.3450
Epoch 59/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3346 - val_loss: 0.3542
Epoch 60/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3224 - val_loss: 0.3434
Epoch 61/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3327 - val_loss: 0.3414
Epoch 62/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3411 - val_loss: 0.3411
Epoch 63/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3196 - val_loss: 0.3377
Epoch 64/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3287 - val_loss: 0.3360
Epoch 65/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3251 - val_loss: 0.3356
Epoch 66/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3335 - val_loss: 0.3405
Epoch 67/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3318 - val_loss: 0.3373
Epoch 68/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3120 - val_loss: 0.3331
Epoch 69/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3273 - val_loss: 0.3321
Epoch 70/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3355 - val_loss: 0.3318
Epoch 71/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3363 - val_loss: 0.3292
Epoch 72/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3238 - val_loss: 0.3281
Epoch 73/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3234 - val_loss: 0.3329
Epoch 74/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3263 - val_loss: 0.3297
Epoch 75/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3267 - val_loss: 0.3319
Epoch 76/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3172 - val_loss: 0.3298
Epoch 77/100
363/363 [==============================] - 1s 2ms/step - loss: 0.3290 - val_loss: 0.3279
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1.3)
plt.show()
plot_learning_curves(history)
model.evaluate(x_test_scaled, y_test)
162/162 [==============================] - 0s 1ms/step - loss: 0.3403
0.34025290608406067
3-6 使子类与lambda分别实战自定义层次(下)
# tf.nn.softplus: log(1+e^x)
customized_softplus = keras.layers.Lambda(lambda x: tf.nn.softplus(x))
print(customized_softplus([-10., -5., 0., 5., 10.]))
tf.Tensor([4.5398901e-05 6.7153485e-03 6.9314718e-01 5.0067153e+00 1.0000046e+01], shape=(5,), dtype=float32)
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
# 新数据集---房价预测
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
from sklearn.model_selection import train_test_split
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state=7, test_size=0.25
) # 默认3:1的比例划分
x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all,
random_state=11)
# 归一化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
# 获取训练集的均值和方差, 在测试集和验证集上都用和训练集一样的均值和方差
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)
# 自定义 Dense layer
class CustomizedDenseLayer(keras.layers.Layer):
def __init__(self, units, activation=None, **kwargs):
self.units = units
self.activation = keras.layers.Activation(activation)
super(CustomizedDenseLayer, self).__init__(**kwargs) # 继承父类
def build(self, input_shape):
"""构建所需要的的参数"""
# x*w+b, x_input_shape:[None, a] w: [a, b] output_shape: [None, b]
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.units),
initializer='uniform',
trainable=True)
self.bias = self.add_weight(name="bias",
shape=(self.units,),
initializer='zeros',
trainable=True)
super(CustomizedDenseLayer, self).build(input_shape)
def call(self, x):
"""完成正向计算"""
return self.activation(x @ self.kernel + self.bias)
# 搭建模型
model = keras.models.Sequential([
# 使用自定义模型
CustomizedDenseLayer(30, activation="relu",
input_shape=x_train.shape[1:]), # 8
CustomizedDenseLayer(1),
# 加上我们自定一的softplus
customized_softplus,
# keras.layers.Dense(1, activation="softplus")
# keras.layers.Dense(1), keras.layers.Activation("softplus")
])
# 自定义实现 loss
def customized_mse(y_true, y_pred):
return tf.reduce_mean(tf.square(y_pred - y_true))
model.summary() # model 信息
model.compile(loss="mean_squared_error", optimizer="sgd",
# metrics=["mean_squared_error"]
) # 编译model, 设置损失函数和优化方法
callbacks = [keras.callbacks.EarlyStopping(
patience=5, min_delta=1e-3
)]
Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
customized_dense_layer_4 (Cu (None, 30) 270
_________________________________________________________________
customized_dense_layer_5 (Cu (None, 1) 31
_________________________________________________________________
lambda (Lambda) (None, 1) 0
=================================================================
Total params: 301
Trainable params: 301
Non-trainable params: 0
_________________________________________________________________
3-7 tf.function函数转换
# tf.function and auto-graph
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
def scaled_elu(z, scale=1.0, alpha=1.0):
# z > 0 ? scale * z: scale * alpha * tf.nn.elu(z)
is_positive = tf.greater_equal(z, 0.0)
return scale * tf.where(is_positive, z, alpha*tf.nn.elu(z))
print(scaled_elu(tf.constant(-3.0)))
print(scaled_elu(tf.constant([-3., -2.5])))
tf.Tensor(-0.95021296, shape=(), dtype=float32)
tf.Tensor([-0.95021296 -0.917915 ], shape=(2,), dtype=float32)
scaled_elu_tf = tf.function(scaled_elu)
print(scaled_elu_tf(tf.constant(-3.0)))
print(scaled_elu_tf(tf.constant([-3., -2.5])))
print(scaled_elu_tf.python_function is scaled_elu)
tf.Tensor(-0.95021296, shape=(), dtype=float32)
tf.Tensor([-0.95021296 -0.917915 ], shape=(2,), dtype=float32)
True
%timeit scaled_elu(tf.random.normal((1000, 1000)))
%timeit scaled_elu_tf(tf.random.normal((1000, 1000)))
The slowest run took 18.35 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 512 µs per loop
The slowest run took 100.58 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 658 µs per loop
TF2默认的即时执行模式(Eager Execution)带来了灵活及易调试的特性,但在特定的场合,例如追求高性能或部署模型时,我们依然希望使用 TensorFlow 1.X 中默认的图执行模式(Graph Execution),将模型转换为高效的 TensorFlow 图模型。此时,TensorFlow 2 为我们提供了 tf.function 模块,结合 AutoGraph 机制,使得我们仅需加入一个简单的 @tf.function 修饰符,就能轻松将模型以图执行模式运行。
tf.function 基础使用方法
在 TensorFlow 2 中,推荐使用 tf.function (而非 1.X 中的 tf.Session )实现图执行模式,从而将模型转换为易于部署且高性能的 TensorFlow 图模型。只需要将我们希望以图执行模式运行的代码封装在一个函数内,并在函数前加上 @tf.function 即可,如下例所示。关于图执行模式的深入探讨可参考 附录 。
警告!
并不是任何函数都可以被 @tf.function 修饰!@tf.function 使用静态编译将函数内的代码转换成计算图,因此对函数内可使用的语句有一定限制(仅支持 Python 语言的一个子集),且需要函数内的操作本身能够被构建为计算图。建议在函数内只使用 TensorFlow 的原生操作,不要使用过于复杂的 Python 语句,函数参数只包括 TensorFlow 张量或 NumPy 数组,并最好是能够按照计算图的思想去构建函数(换言之,@tf.function 只是给了你一种更方便的写计算图的方法,而不是一颗能给任何函数加速的 银子弹 )
3-8 @tf.function函数转换
# 1 + 1/2 + 1/2^2 + 。。。 + 1/2^n
# @tf.function
def converge_to_2(n_iters):
total = tf.constant(0.)
increment = tf.constant(1.)
for _ in range(n_iters):
total += increment
increment /= 2.0
return total
print(converge_to_2(20))
tf.Tensor(1.9999981, shape=(), dtype=float32)
# 上述两种方式均可以将普通python函数转换为tf中可以生成图结构
def display_tf_code(func):
code = tf.autograph.to_code(func)
from IPython.display import display, Markdown
display(Markdown('```python\n{}\n```'.format(code)))
display_tf_code(scaled_elu)
def tf__scaled_elu(z, scale=None, alpha=None):
with ag__.FunctionScope('scaled_elu', 'fscope', ag__.ConversionOptions(recursive=True, user_requested=True, optional_features=(), internal_convert_user_code=True)) as fscope:
do_return = False
retval_ = ag__.UndefinedReturnValue()
is_positive = ag__.converted_call(ag__.ld(tf).greater_equal, (ag__.ld(z), 0.0), None, fscope)
try:
do_return = True
retval_ = (ag__.ld(scale) * ag__.converted_call(ag__.ld(tf).where, (ag__.ld(is_positive), ag__.ld(z), (ag__.ld(alpha) * ag__.converted_call(ag__.ld(tf).nn.elu, (ag__.ld(z),), None, fscope))), None, fscope))
except:
do_return = False
raise
return fscope.ret(retval_, do_return)
display_tf_code(converge_to_2) # 注意注释@tf.function
def tf__converge_to(n_iters):
with ag__.FunctionScope('converge_to_2', 'fscope', ag__.ConversionOptions(recursive=True, user_requested=True, optional_features=(), internal_convert_user_code=True)) as fscope:
do_return = False
retval_ = ag__.UndefinedReturnValue()
total = ag__.converted_call(ag__.ld(tf).constant, (0.0,), None, fscope)
increment = ag__.converted_call(ag__.ld(tf).constant, (1.0,), None, fscope)
def get_state():
return (total, increment)
def set_state(vars_):
nonlocal increment, total
(total, increment) = vars_
def loop_body(itr):
nonlocal increment, total
_ = itr
total = ag__.ld(total)
total += increment
increment = ag__.ld(increment)
increment /= 2.0
_ = ag__.Undefined('_')
ag__.for_stmt(ag__.converted_call(ag__.ld(range), (ag__.ld(n_iters),), None, fscope), None, loop_body, get_state, set_state, ('total', 'increment'), {'iterate_names': '_'})
try:
do_return = True
retval_ = ag__.ld(total)
except:
do_return = False
raise
return fscope.ret(retval_, do_return)
# 变量式
var = tf.Variable(0.)
@tf.function
def add_21():
return var.assign_add(21)
print(add_21())
tf.Tensor(21.0, shape=(), dtype=float32)
@tf.function
def add_21():
var = tf.Variable(0.)
return var.assign_add(21)
print(add_21())
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-24-51cdfc619951> in <module>()
5 var = tf.Variable(0.)
6 return var.assign_add(21)
----> 7 print(add_21())
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
886 # Lifting succeeded, so variables are initialized and we can run the
887 # stateless function.
--> 888 return self._stateless_fn(*args, **kwds)
889 else:
890 _, _, _, filtered_flat_args = \
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
2939 with self._lock:
2940 (graph_function,
-> 2941 filtered_flat_args) = self._maybe_define_function(args, kwargs)
2942 return graph_function._call_flat(
2943 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3359
3360 self._function_cache.missed.add(call_context_key)
-> 3361 graph_function = self._create_graph_function(args, kwargs)
3362 self._function_cache.primary[cache_key] = graph_function
3363
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3204 arg_names=arg_names,
3205 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206 capture_by_value=self._capture_by_value),
3207 self._function_attributes,
3208 function_spec=self.function_spec,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
988 _, original_func = tf_decorator.unwrap(python_func)
989
--> 990 func_outputs = python_func(*func_args, **func_kwargs)
991
992 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().__wrapped__(*args, **kwds)
635 return out
636
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
ValueError: in user code:
<ipython-input-24-51cdfc619951>:5 add_21 *
var = tf.Variable(0.)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variables.py:262 __call__ **
return cls._variable_v2_call(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variables.py:256 _variable_v2_call
shape=shape)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/variables.py:67 getter
return captured_getter(captured_previous, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py:731 invalid_creator_scope
"tf.function-decorated function tried to create "
ValueError: tf.function-decorated function tried to create variables on non-first call.
在定义神经网络时 转化为function之前 Variable 需要初始化
但constant可直接放于内部
@tf.function
def cube(z):
return tf.pow(z, 3)
print(cube(tf.constant([1, 2, 3])))
print(cube(tf.constant([1., 2., 3.])))
tf.Tensor([ 1 8 27], shape=(3,), dtype=int32)
tf.Tensor([ 1. 8. 27.], shape=(3,), dtype=float32)
3-9 函数签名与图结构
@tf.function(input_signature=[tf.TensorSpec([None], tf.int32, name="x")])
# 指定签名,限定函数输入数据类型
def cube(z):
return tf.pow(z, 3)
print(cube(tf.constant([1, 2, 3])))
print("_______")
try:
print(cube(tf.constant([1., 2., 3.])))
except ValueError as ex:
print(ex)
tf.Tensor([ 1 8 27], shape=(3,), dtype=int32)
_______
Python inputs incompatible with input_signature:
inputs: (
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32))
input_signature: (
TensorSpec(shape=(None,), dtype=tf.int32, name='x'))
tf 中 , 一个函数有了 input_signature 后才能够被保存为model 即 saved_model()
# @tf.function : py func -> graph
# get_concreate_function -> add input_signature -> SavedModel
cube_func_int32 = cube.get_concrete_function(
tf.TensorSpec([None], tf.int32))
print(cube_func_int32)
ConcreteFunction cube(z)
Args:
z: int32 Tensor, shape=(None,)
Returns:
int32 Tensor, shape=(None,)
print(cube_func_int32 is cube.get_concrete_function(
tf.TensorSpec([5], tf.int32)))
print(cube_func_int32 is cube.get_concrete_function(
tf.constant([1, 2, 3])))
# resilt is same input_signature is same
True
True
cube_func_int32.graph
<tensorflow.python.framework.func_graph.FuncGraph at 0x7efb83e64b00>
# 查看操作
cube_func_int32.graph.get_operations()
[<tf.Operation 'x' type=Placeholder>,
<tf.Operation 'Pow/y' type=Const>,
<tf.Operation 'Pow' type=Pow>,
<tf.Operation 'Identity' type=Identity>]
pow_op = cube_func_int32.graph.get_operations()[2]
print(pow_op)
name: "Pow"
op: "Pow"
input: "x"
input: "Pow/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
print(list(pow_op.inputs))
print("________________________")
print(list(pow_op.outputs))
[<tf.Tensor 'x:0' shape=(None,) dtype=int32>, <tf.Tensor 'Pow/y:0' shape=() dtype=int32>]
________________________
[<tf.Tensor 'Pow:0' shape=(None,) dtype=int32>]
## graph 中 也可以通过名字 进行对应的操作
cube_func_int32.graph.get_operation_by_name("x")
<tf.Operation 'x' type=Placeholder>
Placeholder 即放入一个输入 才能得到输出
cube_func_int32.graph.get_tensor_by_name("x:0")
<tf.Tensor 'x:0' shape=(None,) dtype=int32>
cube_func_int32.graph.as_graph_def()
node {
name: "x"
op: "Placeholder"
attr {
key: "_user_specified_name"
value {
s: "x"
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
}
}
}
}
node {
name: "Pow/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
}
int_val: 3
}
}
}
}
node {
name: "Pow"
op: "Pow"
input: "x"
input: "Pow/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
node {
name: "Identity"
op: "Identity"
input: "Pow"
attr {
key: "T"
value {
type: DT_INT32
}
}
}
versions {
producer: 561
}
# 保存模型
# 保存模型后,如何载入,载入后的操作
3-10 近似求导
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
def f(x):
return 3. * x ** 2 + 2. * x - 1
def approximate_derivative(f, x, eps=1e-3):
return (f(x+eps) - f(x-eps))/(2.*eps)
print(approximate_derivative(f, 1.))
7.999999999999119
def g(x1, x2):
return (x1 + 5) * (x2 ** 2)
def approximate_gradient(g, x1, x2, eps=1e-3):
dg_x1 = approximate_derivative(lambda x: g(x, x2), x1, eps)
dg_x2 = approximate_derivative(lambda x: g(x1, x), x2, eps)
return dg_x1, dg_x2
print(approximate_gradient(g, 2., 3.))
(8.999999999993236, 41.999999999994486)
3-11 tf.GradientTape基本使用方法
x1 = tf.Variable(2.)
x2 = tf.Variable(3.)
with tf.GradientTape() as tape:
z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
print(dz_x1)
try:
dz_x2 = tape.gradient(z, x2)
except RuntimeError as ex:
print(ex)
# tape的结果只能应用一次
tf.Tensor(9.0, shape=(), dtype=float32)
A non-persistent GradientTape can only be used tocompute one set of gradients (or jacobians)
x1 = tf.Variable(2.)
x2 = tf.Variable(3.)
# 指定参数 即可一直使用
with tf.GradientTape(persistent=True) as tape:
z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
print(dz_x1)
try:
dz_x2 = tape.gradient(z, x2)
except RuntimeError as ex:
print(ex)
print(dz_x2)
tf.Tensor(9.0, shape=(), dtype=float32)
tf.Tensor(42.0, shape=(), dtype=float32)
注意 使用完后 需要自己手动释放内存
del tape
## 同时求导
x1 = tf.Variable(2.)
x2 = tf.Variable(3.)
with tf.GradientTape() as tape:
z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)
[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]
# 常量是否可以求导
## 同时求导
x1 = tf.constant(2.)
x2 = tf.constant(3.)
with tf.GradientTape() as tape:
z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)
[None, None]
x1 = tf.constant(2.)
x2 = tf.constant(3.)
with tf.GradientTape() as tape:
tape.watch(x1)
tape.watch(x2)
z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)
[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]
tf的更多相关文章
- TFS命令tf:undo(强制签入签出文件)
由于修改计算机名称或不同电脑上操作忘记签入,则需要强制签入文件 具体步骤如下: 1.在命令行中输入"cd C:\Program Files\Microsoft Visual Studio ...
- 制作HP MicroServer Gen8可用的ESXi 5.x SD/TF卡启动盘
前些日子看到HP公司和京东在搞服务器促销活动,于是就入了一个 ProLiant MicroServer Gen8 的低配版 相比上一代产品,新一代 MicroServer系列微型服务器可更换处理器,还 ...
- TF Boys (TensorFlow Boys ) 养成记(六)
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...
- TF Boys (TensorFlow Boys ) 养成记(五)
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- TF Boys (TensorFlow Boys ) 养成记(四)
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...
- TF Boys (TensorFlow Boys ) 养成记(三)
上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...
- TF Boys (TensorFlow Boys ) 养成记(二)
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...
- TF Boys (TensorFlow Boys ) 养成记(一)
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...
- ROS TF——learning tf
在机器人的控制中,坐标系统是非常重要的,在ROS使用tf软件库进行坐标转换. 相关链接:http://www.ros.org/wiki/tf/Tutorials#Learning_tf 一.tf简介 ...
- TF/IDF(term frequency/inverse document frequency)
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...
随机推荐
- PHP留言板制作(MySQL+PHP)
参考视频:https://www.bilibili.com/video/BV1Js411i74j?p=8 环境:phpstudy 2018 PHP 5.X PHPmyadmin ...
- 【超详细】MakeDown(Typora)+PicGo+Gitee实现图床
[超详细]MakeDown(Typora)+PicGo+Gitee实现图床 序言:我们有时在用makedown整理笔记时想把自己的笔记上传到博客园,可是发现在上传过程中makedown中的图片显示不出 ...
- 2020年的UWP(5)——UWP和Desktop Extension的双向交互
上一篇我们提到了怎么在Desktop Extension中等待并处理UWP端发出的request.在本篇中将描述UWP和Desktop Extension双向交互的场景,即存在从两端各自发出reque ...
- Java基础-方法的重写和重载
重载(Overload)和重写(Override) 重载是在同一个类里面,方法名字相同,而参数不同.返回类型可以相同也可以不同.每个重载的方法(或者构造函数)都必须有一个独一无二的参数类型列表. 重写 ...
- Windows 系统下Vue的安装及环境搭建
Hope to help those in need and those who use Vue for the first time. 1.获得并安装node.js.nodejs官网:https:/ ...
- IIS添加应用程序和虚拟目录
右键添加应用程序 别名就是虚拟路径 比如本来路径是http://localhost:44336/main.html 别名为 qwer 那么就可以访问http://localhost:4433 ...
- Android自定义ViewGroup-入门
1.效果 2步骤 自定义ViewGroup的步骤是 1.1测量onMeasure /** * 获取子view的个数 * 逐个测量其宽高 得到整个ViewGroup的宽高 * * @param widt ...
- Minor GC 和 Full GC的时机
一.对象何时能够进入老年代 GC年龄判定 每进行一次GC过程,存活的对象的GC年龄都会+1:当对象逃过15次GC,年龄达到15岁时,即可进入老年代 可以通过-XX:MaxTenuringThreshl ...
- JAR-使用JAVA命令编译打包一个可执行jar包
一.开发一个演示项目 项目源代码开发 项目名称叫jar-package-example(其实只是一个文件夹, 用以将演示的所有文件夹和文件存放在其中, 没啥其它作用), 为了方便, 后文统一叫jar- ...
- easyui中刷新列表
<table class="crud-content-info" id="showProductDialogFormstandrad"> </ ...