一、大幅度制约存储介质吞吐量的原因

首先抛出结论。无论任何存储介质(不管是机械硬盘还是SSD,抑或是内存)的顺序访问速度都远远高出随机访问的速度。

二、传统数据库的实现机制

传统数据库,比如Mysql使用的b+树索引,对读友好。但容易造成随机写。比如新插入一个值到数据库,首先我们要读取b+树,判断新插入的值放在树的什么位置,其次在特定的位置写入新值,并做一系列调整,分裂,使之满足b+树的特性。这不可避免的造成了磁盘的随机访问,大数据量的插入速度很慢。当然这也符合历史发展趋势,早起的IT行业,数据量和数据增长速度有限,只要拥有良好的查询性能,即可满足需求。

但随着硬件性能的提升,业务形态的变化,现今的互联网系统,往往面临着数据的大量、高速产生。如何加快存储速度,成了关键。于是LSM Tree应运而生。

三、LSM Tree的历史由来

LSM Tree的最早概念,诞生于1996年google的“BigTable”论文。后世多种数据库产品对LSM Tree的具体实现,都有一些小的差异。采用LSM Tree作为存储结构的数据库有,Google的LevelDB, Facebook的RockDB(RockDB来源于LevelDB), Cassandra,HBase等。

四、提高写吞吐量的思路

既然顺序写比起随机写速度更快。那得想办法将数据顺序写。

4.1 一种方式是数据来后,直接顺序落盘

这拥有很高的写速度。但是当我们想要查寻一个数据的时候,由于存储下的数据本身是无序的(写的值本身无法控制顺序),无法使用任何算法进行优化,只能挨个查询,读取速度是很慢的。

4.2 另一种方式,是保证落盘的数据是顺序写入的同时,还保证这些数据是有序的

而请求写入的数据本身是无序且不可预测的,如何保证落盘的数据是有序的呢?这就需要利用内存访问速度比硬盘快的原理。将写入的请求,先在内存中缓存起来,按一定的有序结构组织,达到一定量后,再写入硬盘,从而使得硬盘顺序写入了有序的数据。提高数据的写入速度同时,方便了后续基于有序数据的查找(有序的数据结构,可以通过二分查找等算法进行进行快速查询,具体查找算法,得看是哪种有序结构)

五、 LSM Tree结构图

LSM tree即利用了上述第二种方式。具体结构图如下:

5.1 写入时,为什么要先写一份log

为了防止写入的数据,在断电时丢失。所以先顺序写一份log到硬盘,方便数据恢复。

5.2 什么是MemTable

写入数据的内存缓存,MemTable中存储的是有序的数据。什么才是有序的数据结构?不同的实现可能不相同。LevelDB使用的是SkipList。Hbase使用的是B Tree。

5.3 什么是ImmutableMemTable

MemTable中的数据随时在增加,当其增加到一定量后,将其变为不可变数据,ImmutableMemTable。新生成一份MemTable用于后续的数据写入。ImmutableMemTable中的数据,将被写入到硬盘中的SSTable.

5.4 什么是SSTable

SSTable 全称Sorted String Table。实际上就是被写入数据的有序存储文件,所以叫sorted.

SSTable文件有DataBlock,IndexBlock,BitSet(不同的实现,有可能没有)

  • DataBlock 一个SSTable包含多个数据块,数据按KeyValue的形式有序组织。
  • IndexBlock 记录每个数据块中最大的那个Key的Offset
  • BitSet 使用Bloom Filter来将一个Key映射到BitSet中

数据的有序组织、IndexBlock、BitSet。这些数据结构,都是为了提高数据读取时的速度。那数据是如何进行读取的呢?

5.5 如何进行数据读取

读取的大概流程如下



由于SSTable是顺序创建,所以最新的SSTable中包含了最新的值。再查找SSTable时,依次查找最新的SSTable。

每一个SSTable的查询流程如下



布隆表达式的原理是以极小的数据容量,去存储大量数据存在的可能性。所以如果通过BitSet的布隆表达式查询该Key存在时,只是一个理论存在可能,接下来要通过IndexBlock真正进行查询。而如果布隆表达式在BitSet中没有找到,那就是真的没有,可以快速跳过,进入下一个SSTable查找。布隆表达式的运用,能够大大提高查找效率。

5.6 如何进行数据的删除和更新

为了保证数据的顺序写,所有SSTable都不会因为删除和更新而在原数据所在位置进行更改。在更新时,仅仅插入一个最新的值去写到新的SSTable中。在删除时,依然是插入一个基于该Key的删除标记,写入最新的SSTable中。由于查找某个Key是基于时间新鲜度,反向依次查找SSTable,所以读取某个Key始终读的是最新的值。

5.7 SSTable的合并

随着日积月累,SSTable的文件数会增多,导致查找时性能下降。同时由于数据的更新或删除。让老的SSTable中数据的有效性降低,太多的过期数据占用SSTable,同样会降低查询效率。所以一般数据库引擎,定期都会有一个SSTable的合并操作。移除过时数据,将多个小SSTable合并成大的SSTable。

5.8 最近读取的SSTable IndexBlock缓存

在大内存的条件下,部分数据库还会将最近读取的SSTable 索引,缓存至内存。这进一步加速了查找的过程。

六、参考文献

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html

https://blog.csdn.net/u014774781/article/details/52105708

https://en.wikipedia.org/wiki/Log-structured_merge-tree

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/

欢迎关注我的个人公众号"西北偏北UP",记录代码人生,行业思考,科技评论

LSM(Log Structured Merge Trees ) 笔记的更多相关文章

  1. Log Structured Merge Trees (LSM)

    1      概念 LSM = Log Structured Merge Trees 来源于google的bigtable论文. 2      解决问题 传统的数据库如MySql采用B+树存放数据,B ...

  2. Log Structured Merge Trees(LSM) 算法

    十年前,谷歌发表了 “BigTable” 的论文,论文中很多很酷的方面之一就是它所使用的文件组织方式,这个方法更一般的名字叫 Log Structured-Merge Tree. LSM是当前被用在许 ...

  3. Log Structured Merge Trees(LSM) 原理

    http://www.open-open.com/lib/view/open1424916275249.html

  4. The storage wars: Shadow Paging, Log Structured Merge and Write Ahead Logging

    The storage wars: Shadow Paging, Log Structured Merge and Write Ahead Logging previous: Seek, and yo ...

  5. SSTable and Log Structured Storage: LevelDB

    If Protocol Buffers is the lingua franca of individual data record at Google, then the Sorted String ...

  6. InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等

    The New InfluxDB Storage Engine: Time Structured Merge Tree by Paul Dix | Oct 7, 2015 | InfluxDB | 0 ...

  7. merge into 笔记

    1 IF EXISTS (SELECT 1 FROM sys.types t            join sys.schemas s on t.schema_id=s.schema_id      ...

  8. Pull后产生多余的log(Merge branch 'master' of ...)

    第一步: git reset --hard 73d0d18425ae55195068d39b3304303ac43b521a 第二步: git push -f origin feature/PAC_1 ...

  9. LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

    The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...

随机推荐

  1. js下 Day20、综合案例

    一.购物车 效果图: 功能思路分析: 1. 面向对象框架 2. 模拟数据 1.多个店铺数组套对象 2.每个店铺多个商品,数组套对象

  2. ceph如何快速卸载所有osd及擦除磁盘分区表和内容并重新加入

    我的ceph集群中有4台服务器,16个osd,因为某些原因,集群中的数据都不要了,但是集群要保留给新的应用使用,集群现有的osd情况如下 [root@ceph-host-01 ~]# cat /etc ...

  3. Redis不仅仅是缓存,还是……

    你需要一个经典数据库吗? 一段时间以来,巨大数量的数据处理迫使所有的应用程序在数据库层前添加缓存策略.即使经典数据库进行了大量的下划线优化,仍然不能提供足够的速度和可用性.主要原因在于数据存储越远,获 ...

  4. SQL优化器-RBO与CBO分别是什么

    数据库系统发展历史 数据库系统产生于20世纪60年代中期,至今有近50多年的历史,其发展经历了三代演变,造就了四位图灵奖得主,发展成为一门计算机基础学科,带动了一个巨大的软件产业. 数据库系统是操作系 ...

  5. 152. Maximum Product Subarray动态规划连乘最大子串

    Find the contiguous subarray within an array (containing at least one number)which has the largest p ...

  6. MVC和WebApi路由机制比较

    1.MVC使用的路由 在MVC中,默认路由机制是通过解析url路径来匹配Action.比如:/User/GetList,这个url就表示匹配User控制器下的GetList方法,这是MVC路由的默认解 ...

  7. JQuery特点:

    轻量级 强大的选择器 出色的DOM封装 可靠的事件处理机制 完善的Ajax 出色的浏览器兼容性 丰富的插件支持 完善的文档 支持链式操作

  8. Java 为每个原始类型提供了哪些包装类型:

    java的包装类型: 原始类型: boolean,char,byte,short,int,long,float,double 包装类型:Boolean,Character,Byte,Short,Int ...

  9. Java学习日报7.27

    笔记

  10. Mapreduce实例--求平均值

    求平均数是MapReduce比较常见的算法,求平均数的算法也比较简单,一种思路是Map端读取数据,在数据输入到Reduce之前先经过shuffle,将map函数输出的key值相同的所有的value值形 ...