1.导入数据

df = pd.read_csv(
# 该参数为数据在电脑中的路径,可以不填写
filepath_or_buffer='/Users/Weidu/Desktop/sz000002.csv',
# 该参数代表数据的分隔符,csv文件默认是逗号。其他常见的是'\t'
sep=',',
# 该参数代表跳过数据文件的的第1行不读入
skiprows=1,
# nrows,只读取前n行数据,若不指定,读入全部的数据
nrows=15,
# 将指定列的数据识别为日期格式。若不指定,时间数据将会以字符串形式读入。一开始先不用。
# parse_dates=['交易日期'],
# 将指定列设置为index。若不指定,index默认为0, 1, 2, 3, 4...
# index_col=['交易日期'],
# 读取指定的这几列数据,其他数据不读取。若不指定,读入全部列
usecols=['交易日期', '股票代码', '股票名称', '收盘价', '涨跌幅', '成交量', '新浪概念', 'MACD_金叉死叉'],
# 当某行数据有问题时,报错。设定为False时即不报错,直接跳过该行。当数据比较脏乱的时候用这个。
error_bad_lines=False,
# 将数据中的null识别为空值
na_values='NULL',
)

2.查看数据

print(df.shape)  # 输出dataframe有多少行、多少列。
print(df.shape[0]) # 取行数量,相应的列数量就是df.shape[1]
print(df.columns) # 顺序输出每一列的名字,演示如何for语句遍历。
print(df.index) # 顺序输出每一行的名字,可以for语句遍历。
print(df.dtypes) # 数据每一列的类型不一样,比如数字、字符串、日期等。该方法输出每一列变量类型
print(df.head(3)) # 看前3行的数据,默认是5。与自然语言很接近
print(df.tail(3)) # 看最后3行的数据,默认是5。
print(df.sample(n=3)) # 随机抽取3行,想要去固定比例的话,可以用frac参数
print(df.describe()) # 非常方便的函数,对每一列数据有直观感受;只会对数字类型的列有效

3.选取制定的行

print(df['股票代码'])  # 根据列名称来选取,读取的数据是Series类型
print(df[['股票代码', '收盘价']]) # 同时选取多列,需要两个括号,读取的数据是DataFrame类型
print(df[[0, 1, 2]]) # 也可以通过列的position来选取

4.loc操作:通过label(columns和index的名字)来读取数据

print(df.loc['12/12/2016']) # 选取指定的某一行,读取的数据是Series类型
print(df.loc['13/12/2016': '06/12/2016']) # 选取在此范围内的多行,和在list中slice操作类似,读取的数据是DataFrame类型
print(df.loc[:, '股票代码':'收盘价']) # 选取在此范围内的多列,读取的数据是DataFrame类型
print(df.loc['13/12/2016': '06/12/2016', '股票代码':'收盘价']) # 读取指定的多行、多列。逗号之前是行的范围,逗号之后是列的范围。读取的数据是DataFrame类型
print(df.loc[:, :]) # 读取所有行、所有列,读取的数据是DataFrame类型
print(df.at['12/12/2016', '股票代码']) # 使用at读取指定的某个元素。loc也行,但是at更高效。

5.iloc操作:通过position来读取数据

print(df.iloc[0]) # 以index选取某一行,读取的数据是Series类型
print(df.iloc[1:3]) # 选取在此范围内的多行,读取的数据是DataFrame类型
print(df.iloc[:, 1:3]) # 选取在此范围内的多列,读取的数据是DataFrame类型
print(df.iloc[1:3, 1:3]) # 读取指定的多行、多列,读取的数据是DataFrame类型
print(df.iloc[:, :]) # 读取所有行、所有列,读取的数据是DataFrame类型
print(df.iat[1, 1]) # 使用iat读取指定的某个元素。使用iloc也行,但是iat更高效。

6.列操作

# 行列加减乘除

print(df['股票名称'] + '_地产')  # 字符串列可以直接加上字符串,对整列进行操作
print(df['收盘价'] * 100) # 数字列直接加上或者乘以数字,对整列进行操作。
print(df['收盘价'] * df['成交量']) # 两列之间可以直接操作。收盘价*成交量计算出的是什么?

# 新增一列
df['股票名称+行业'] = df['股票名称'] + '_地产'

7.统计函数

print(df['收盘价'].mean())  # 求一整列的均值,返回一个数。会自动排除空值。
print(df[['收盘价', '成交量']].mean()) # 求两列的均值,返回两个数,Series
print(df[['收盘价', '成交量']])
print(df[['收盘价', '成交量']].mean(axis=1)) # 求两列的均值,返回DataFrame。axis=0或者1要搞清楚。
#axis=1,代表对整几列进行操作。axis=0(默认)代表对几行进行操作。实际中弄混很正常,到时候试一下就知道了。
print(df['收盘价'].max()) # 最大值
print(df['收盘价'].min()) # 最小值
print(df['收盘价'].std()) # 标准差
print(df['收盘价'].count()) # 非空的数据的数量
print(df['收盘价'].median()) # 中位数
print(df['收盘价'].quantile(0.25)) # 25%分位数

8.shift类函数、删除列的方式

df['昨天收盘价'] = df['收盘价'].shift(-1)  # 读取上一行的数据,若参数设定为3,就是读取上三行的数据;若参数设定为-1,就是读取下一行的数据;
print(df[['收盘价', '昨天收盘价']])
del df['昨天收盘价'] # 删除某一列的方法 df['涨跌'] = df['收盘价'].diff(-1) # 求本行数据和上一行数据相减得到的值
print(df[['收盘价', '涨跌']])
df.drop(['涨跌'], axis=1, inplace=True) # 删除某一列的另外一种方式,inplace参数指是否替代原来的df
print(df)
df['涨跌幅_计9.算'] = df['收盘价'].pct_change(-1) # 类似于diff,但是求的是两个数直接的比例,相当于求涨跌幅

9.其他列函数

df['成交量_cum'] = df['成交量'].cumsum()  # 该列的累加值
print(df[['成交量', '成交量_cum']])
print((df['涨跌幅'] + 1.0).cumprod()) # 该列的累乘值,此处计算的就是资金曲线,假设初始1元钱。 df['收盘价_排名'] = df['收盘价'].rank(ascending=True, pct=False) # 输出排名。ascending参数代表是顺序还是逆序。pct参数代表输出的是排名还是排名比例
print(df[['收盘价', '收盘价_排名']])
del df['收盘价_排名']
print(df['股票代码'].value_counts()) # 计数。统计该列中每个元素出现的次数。返回的数据是Series

10. 筛选操作

print(df['股票代码'] == 'sh000002') # 判断股票代码是否等于sz000002
print(df[df['股票代码'] == 'sz000002']) # 将判断为True的输出:选取股票代码等于sz000002的行
print(df[df['股票代码'].isin(['sz000002', 'sz000003 ', 'sz000004'])]) # 选取股票代码等于sz000002的行
print(df[df['收盘价'] >= 24.0]) # 选取收盘价大于24的行
print(df[(df.index >= '03/12/2016') & (df.index <= '06/12/2016')]) # 两个条件,或者的话就是|

11.缺省值处理

print(df.dropna(how='any'))  # 将带有空值的行删除。how='any'意味着,该行中只要有一个空值,就会删除,可以改成all。
print(df.dropna(subset=['MACD_金叉死叉', '涨跌幅'], how='all')) # subset参数指定在特定的列中判断空值。
#all代表全部为空,才会删除该行;any只要一个为空,就删除该行。 # 补全缺失值
print(df.fillna(value='没有金叉死叉')) # 直接将缺失值赋值为固定的值
df['MACD_金叉死叉'].fillna(value=df['收盘价'], inplace=True) # 直接将缺失值赋值其他列的数据
print(df.fillna(method='ffill')) # 向上寻找最近的一个非空值,以该值来填充缺失的位置,全称forward fill,非常有用
print(df.fillna(method='bfill')) # 向下寻找最近的一个非空值,以该值来填充确实的位置,全称backward fill # 找出缺失值
print(df.notnull()) # 判断是否为空值,反向函数为isnull()
print(df[df['MACD_金叉死叉'].notnull()]) # 将'MACD_金叉死叉'列为空的行输出

12.排序

df.reset_index(inplace=True)
df1 = df.iloc[0:10][['交易日期', '股票代码', '收盘价', '涨跌幅']]
print(df1)
df2 = df.iloc[5:15][['交易日期', '股票名称', '收盘价', '涨跌幅']]
print(df2)
print(df1.append(df2)) # append操作,将df1和df2上下拼接起来。注意观察拼接之后的index
df3 = df1.append(df2, ignore_index=True) # ignore_index参数,用户重新确定index
print(df3)

13.去重

#df3中有重复的行数,我们如何将重复的行数去除?
df3.drop_duplicates(
subset=['收盘价', '交易日期'], # subset参数用来指定根据哪类类数据来判断是否重复。若不指定,则用全部列的数据来判断是否重复
keep='first', # 在去除重复值的时候,我们是保留上面一行还是下面一行?first保留上面一行,last保留下面一行,False就是一行都不保留
inplace=True
)
print(df3)

14. 字符串操作

print(df['股票代码'])
print('sz000002'[:2])
print(df['股票代码'].str[:2])
print(df['股票代码'].str.upper()) # 加上str之后可以使用常见的字符串函数对整列进行操作
print(df['股票代码'].str.lower())
print(df['股票代码'].str.len()) # 计算字符串的长度,length
df['股票代码'].str.strip() # strip操作,把字符串两边的空格去掉
print(df['股票代码'].str.contains('sh')) # 判断字符串中是否包含某些特定字符
print(df['股票代码'].str.replace('sz', 'sh')) # 进行替换,将sz替换成sh print(df['新浪概念'].str.split(';')) # 对字符串进行分割
print(df['新浪概念'].str.split(';').str[:2]) # 分割后取第一个位置
print(df['新浪概念'].str.split(';', expand=True)) # 分割后并且将数据分列

15. 时间处理

df['交易日期'] = pd.to_datetime(df['交易日期'])  # 将交易日期由字符串改为时间变量
print(df['交易日期'])
print(df.iloc[0]['交易日期'])
print(df.dtypes)
print(pd.to_datetime('1999年01月01日')) # pd.to_datetime函数:将字符串转变为时间变量
print(df.at[0, '交易日期'])
print(df['交易日期'].dt.year) # 输出这个日期的年份。相应的month是月份,day是天数,还有hour, minute, second
print(df['交易日期'].dt.week) # 这一天是一年当中的第几周
print(df['交易日期'].dt.dayofyear) # 这一天是一年当中的第几天
print(df['交易日期'].dt.dayofweek) # 这一天是这一周当中的第几天,0代表星期一
print(df['交易日期'].dt.weekday) # 和上面函数相同,更加常用
print(df['交易日期'].dt.weekday_name) # 和上面函数相同,返回的是星期几的英文,用于报表的制作。
print(df['交易日期'].dt.days_in_month) # 这一天是这一月当中的第几天
print(df['交易日期'].dt.is_month_end) # 这一天是否是该月的开头,是否存在is_month_end?
print(df['交易日期'] + pd.Timedelta(days=1)) # 增加一天,Timedelta用于表示时间差数据
print((df['交易日期'] + pd.Timedelta(days=1)) - df['交易日期']) # 增加一天然后再减去今天的日期

16. rolling、expanding操作

#计算'收盘价'这一列的均值
print(df['收盘价'].mean())
#如何得到每一天的最近3天收盘价的均值呢?即如何计算常用的移动平均线?
#使用rolling函数
df['收盘价_3天均值'] = df['收盘价'].rolling(5).mean()
print(df[['收盘价', '收盘价_3天均值']])
#rolling(n)即为取最近n行数据的意思,只计算这n行数据。后面可以接各类计算函数,例如max、min、std等
print(df['收盘价'].rolling(3).max())
print(df['收盘价'].rolling(3).min())
print(df['收盘价'].rolling(3).std())
rolling可以计算每天的最近3天的均值,如果想计算每天的从一开始至今的均值,应该如何计算?
#使用expanding操作
df['收盘价_至今均值'] = df['收盘价'].expanding().mean()
print(df[['收盘价', '收盘价_至今均值']])
expanding即为取从头至今的数据。后面可以接各类计算函数
print(df['收盘价'].expanding().max())
print(df['收盘价'].expanding().min())
print(df['收盘价'].expanding().std())
rolling和expanding简直是为量化领域量身定制的方法,经常会用到。

17.输出

print(df)
df.to_csv('output.csv', encoding='gbk', index=False)

未完待续。。。

https://www.cnblogs.com/weidu/p/9831807.html

http://pandas.pydata.org/pandas-docs/stable/api.html

pandas数据分析API常用操作的更多相关文章

  1. HDFS Java API 常用操作

    package com.luogankun.hadoop.hdfs.api; import java.io.BufferedInputStream; import java.io.File; impo ...

  2. Pandas 之 DataFrame 常用操作

    import numpy as np import pandas as pd This section will walk you(引导你) through the fundamental(基本的) ...

  3. etcd api常用操作

    如果需要使用v2 version api,启动etcd时候需要加入“ETCD_ENABLE_V2=true”参数,否则会报错“404 page not found” 获取etcd信息 版本信息 # c ...

  4. Java8 Stream流API常用操作

    Java版本现在已经发布到JDK13了,目前公司还是用的JDK8,还是有必要了解一些JDK8的新特性的,例如优雅判空的Optional类,操作集合的Stream流,函数式编程等等;这里就按操作例举一些 ...

  5. 【JDK8】Java8 Stream流API常用操作

    Java版本现在已经发布到JDK13了,目前公司还是用的JDK8,还是有必要了解一些JDK8的新特性的,例如优雅判空的Optional类,操作集合的Stream流,函数式编程等等;这里就按操作例举一些 ...

  6. pandas DataFrame 数据处理常用操作

    Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/ ...

  7. easyui api常用操作

    一.FORM表单类 一.textbox validatebox 验证 1.验证规则:validType : 验证规则,类型STRING|ARRAY:1个规则就直接一个字符串,多个规则写在数组里 例如: ...

  8. Elasticsearch(ES)API 增删查改常用操作

    常用操作 查询所有数据 POST http://192.168.97.173:27009/logstash_test_2018/doc/_search { "query": { & ...

  9. 『无为则无心』Python序列 — 18、Python列表概念及常用操作API

    目录 1.列表的概念 (1)列表的定义 (2)列表的应用场景 (3)列表的定义格式 2.列表的常用操作 (1)列表的查找 1)通过下标查找 2)通过方法查找 3)判断是否存在 (2)列表的增加 @1. ...

随机推荐

  1. SpringBoot瘦身部署(15.9 MB - 92.3 KB)

    1. 简介   SpringBoot项目部署虽然简单,但是经常因为修改了少量代码而需要重新打包上传服务器重新部署,而公网服务器的网速受限,可能整个项目的代码文件仅仅只有1-2MB甚至更少,但是需要上传 ...

  2. 学习笔记——JS语言精粹

    JS作用域是基于词法作用域的顶级对象. JS是一门弱类型语言,强类型能在编译时检测错误. JS是唯一一门所有浏览器都能识别的语言. 块注释对于被注释的代码是不安全的,例如/*  var rm=/a*/ ...

  3. 下载windows官网镜像并打包成iso文件

    一.微软官网下载镜像地址:https://www.microsoft.com/zh-cn/software-download/ 选择所需下载的win10.win7等windows镜像(以win10为例 ...

  4. 1款开源工具,实现自动化升级K3S集群!

    即便你的集群能够平稳运行,Kubernetes升级依旧是一项艰难的任务.由于每3个月Kubernetes会发布一个新版本,所以升级是十分必要的.如果一年内你不升级你的Kubernetes集群,你就会落 ...

  5. Spring MVC整合 freemarker

    1.什么是Spring MVC? Spring MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将Web层进行职责解耦,基于请求驱 ...

  6. Python 的 10 个开发技巧!太实用了

    1. 如何在运行状态查看源代码? 查看函数的源代码,我们通常会使用 IDE 来完成. 比如在 PyCharm 中,你可以 Ctrl + 鼠标点击 进入函数的源代码. 那如果没有 IDE 呢? 当我们想 ...

  7. Core3.0使用Caching.Memory

    前言 参考链接: 使用缓存:https://www.cnblogs.com/gygg/p/11275417.html 过期时间:https://www.cnblogs.com/maijin/p/704 ...

  8. EF5中使用UnitOfWork

    前言 每次提交数据库都会打开一个连接,造成结果是:多个连接无法共用一个数据库级别的事务,也就无法保证数据的原子性.一致性. 解决办法是:在ObjectContext的CRUD操作基础上再包装一层,提供 ...

  9. 使用Python实现搜索任意电影资源的磁力链接

    对于喜欢电影的人来说各种电影资源必不可少,但每次自己搜索都比较麻烦,索性用python自己写一个自动搜索的脚本. 这里我只分享我的思路,具体如何实现参考代码,要想实现搜索功能先要抓包分析如何发送数据, ...

  10. Java学习_Java核心类

    字符串和编码 字符串在String内部是通过一个char[]数组表示的,因此,可以按下面的写法: String s2 = new String(new char[] {'H', 'e', 'l', ' ...