水题挑战6: CF1444A DIvision
A. Division
time limit per test1 second
memory limit per test512 megabytes
inputstandard input
outputstandard output
Oleg's favorite subjects are History and Math, and his favorite branch of mathematics is division.
To improve his division skills, Oleg came up with \(t\) pairs of integers \(p_i\) and \(q_i\) and for each pair decided to find the greatest integer \(x_i\), such that:
\(p_i\) is divisible by \(x_i\);
\(x_i\) is not divisible by \(q_i\).
Oleg is really good at division and managed to find all the answers quickly, how about you?
Input
The first line contains an integer \(t\) \((1\leq t\leq 50)\) — the number of pairs.
Each of the following \(t\) lines contains two integers \(p_i\) and \(q_i\) (\(1≤p_i≤10^18\); \(2≤q_i≤10^9\)) — the \(i-th\) pair of integers.
Output
Print \(t\) integers: the \(i-th\) integer is the largest \(x_i\) such that \(p_i\) is divisible by \(x_i\), but xi is not divisible by \(q_i\).
One can show that there is always at least one value of xi satisfying the divisibility conditions for the given constraints.
Example
input
3
10 4
12 6
179 822
output
10
4
179
SOLUTION
这还算一道良心数学题
首先我们发现,我们先把p, q质因数分解,有如下结果:
\(p = a_1^p_1 \times a_2^p_2\times ... \times a_m^p_m \times ... a_n^p_n\)
\(q = a_1^q_1 \times a_2^q_2\times ... \times a_m^q_m\)
其中, \(m<n\)
注意,当\(p mod q!=0\), 答案就是\(p\)
当\(p mod q=0\)
就是任意小于\(m\)的数\(i\),\(q_i <= p_i\)
于是,我们就只要考虑前\(m\)个质因数
我们只要对于\(p\)的任意一个质因数,\(p_i\)变成\(q_i-1\),就是一个符合条件的答案
求出最大的,我们只需要考虑变化代价最小的计算出来就好了
Code
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define _(d) while(d(isdigit(ch=getchar())))
template <class T> void g(T&t){T x,f=1;char ch;_(!)ch=='-'?f=-1:f;x=ch-48;_()x=x*10+ch-48;t=f*x;}
typedef unsigned long long ll;
const int N = 1e5+4;
int pri[N], tot, vis[N];
ll p,q,ans;
void pre(){
int End = sqrt(1e9)+1;
for(int i=2; i <= End; i++){
if(!vis[i]) pri[++tot]=i;
for(int j=1; j <= tot; j++){
if( i*pri[j] > End ) break;
vis[i*pri[j]] = 1;
if( i%pri[j] == 0 ) break;
}
}
}
int st[N], tp, num1[N], num2[N];
ll s1[N], s2[N];
int main(){
int T; g(T);
pre();
// rep(i,1,10) cout<<pri[i]<<endl;
while(T--){
g(p), g(q);
if( p%q ) ans = p;
else{
tp = 0; ll nowq = q; ans = 0;
for( int i=1; pri[i]*pri[i] <= nowq && i<=tot; i++ ){
if( nowq % pri[i] == 0 ){
st[++tp] = pri[i]; s1[tp] = 1;
while( nowq % pri[i] == 0 ){
// puts("orz");
nowq /= pri[i];
s1[tp] *= pri[i];
}
}
}
if( nowq >1 ) st[++tp] = nowq, s1[tp] = nowq;
ll nowp = p;
for( int i=1; i <= tp; i++ ){
ll tmp = nowp / s1[i]; s2[i] = s1[i];
while( tmp % st[i] == 0 ){
// puts("orz");
s2[i] *= st[i];
tmp /= st[i];
}
nowp = tmp;
}
ll mn = 1e18;
for( int i=1; i <= tp; i++ ){
// cerr<<s1[i]<<endl;
s2[i] = s2[i]/s1[i]*st[i];
mn = min( mn, s2[i] );
}
ans = p/mn;
}
printf("%llu\n",ans);
}
return 0;
}
水题挑战6: CF1444A DIvision的更多相关文章
- 水题挑战4: luogu P1280 尼克的任务
题目描述 尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成. 尼克的一个工作日为 \(n\) 分钟,从 ...
- 【做题记录】CF1444A Division
CF1444A Division 题意: 给定 \(t\) 组询问,每组给两个数 \(p_i\) 和 \(q_i\) ,找出最大的整数 \(x_i\) ,要求 \(p_i\) 可被 \(x_i\) 整 ...
- 水题挑战3: NOIP 2017 宝藏
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 \(n\) 个深埋在地下的宝藏屋, 也给出了这 \(n\) 个宝藏屋之间可供开发的 \(m\) 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋 ...
- 水题挑战1:NOIP 2013 选择客栈
丽江河边有\(n\) 家很有特色的客栈,客栈按照其位置顺序从 \(1\) 到 \(n\) 编号.每家客栈都按照某一种色调进行装饰(总共 \(k\) 种,用整数 \(0 \sim k-1\) 表示),且 ...
- 水题挑战2 :NOIP提高组 2011 聪明的质监员
小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 \(n\) 个矿石,从\(1\) 到 \(n\) 逐一编号,每个矿石都有自己的重量 \(w_i\) 以及价值 \(v_i\) .检验矿 ...
- 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)
Problem A: The 3n + 1 problem Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 14 Solved: 6[Submit][St ...
- 烟大 Contest1025 - 《挑战编程》第二章:数据结构 Problem A: Jolly Jumpers(水题)
Problem A: Jolly Jumpers Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 10 Solved: 4[Submit][Status] ...
- codeforcess水题100道
之所以在codeforces上找这100道水题的原因是为了巩固我对最近学的编程语言的掌握程度. 找的方式在codeforces上的PROBLEMSET中过的题最多的那些题里面出现的最前面的10个题型, ...
- CF1444A Division 求质因数的方法
2020.12.20 求质因数的方法 CF1444A Division #include<bits/stdc++.h> #define ll long long #define fp(i, ...
随机推荐
- Python+Appium自动化测试(11)-location与size获取元素坐标
appium做app自动化测试过程中,有时需要获取控件元素的坐标进行滑动操作.appium中提供了location方法获取控件元素左上角的坐标,再通过size方法获取控件元素的宽高,就可以得到控件元素 ...
- tomcat 验证码显示问题
在Web开发中使用验证码时可能遇到的问题:java.lang.NoClassDefFoundError: Could not initialize class sun.awt.X11GraphicsE ...
- mysql DISTINCT选取多个字段,获取distinct后的行信息
背景: a表保存关联关系,通过ACode 获取该关系中的所有 BCode, 并获取所有Bcode-max(Bvrsn)的信息 Bnm 表a 表b 循序渐进: ...
- 多测师讲解自动化_rf框架搭建_高级讲师肖sir
robot framework:自动化测试框架(简称RF框架) Python3.7 RIDE(可视化界面). Wxpython pip(在线下载) . setuptools(在线安装) . 第三方 ...
- gorm学习地址
1 gorm curd指南 2 gorm入门指南
- php闭包作为函数参数
<?php function test(Closure $call) { $a = 63; $b = 22; echo "hello"; echo $call($a,$b); ...
- linux(centos8):配置docker的cgroup driver为systemd
一,为什么要修改docker的cgroup driver? 1,什么是cgroups? cgroups(Control Groups) 是 linux 内核提供的一种机制 它可以限制.记录任务组所使用 ...
- nginx安全:配置allow/deny控制ip访问(ngx_http_access_module)
一,nginx中allow/deny指令的用途 1, Nginx的deny和allow指令是由ngx_http_access_module模块提供, Nginx安装默认内置了该模块 2, nginx访 ...
- C++ 设置软件激活不息屏
SetThreadExecutionState(ES_CONTINUOUS | ES_SYSTEM_REQUIRED | ES_DISPLAY_REQUIRED);
- 设备屏幕与Size Class对应