NOIP2020 移球游戏
Description
给定 \(n+1\) 个栈,前 \(n\) 个栈内有不定的 \(m\) 个元素,最后一个栈为空,每个栈的最大容量为 \(m\)
每种颜色都有 \(m\) 种,求任意一种方法,使得在 \(820000\) 次操作内把相同的元素都移动到同一个栈内
Solution
考虑移动单个元素
枚举元素种类,设当前枚举到的元素种类为 \(Now\)
移动规则如下
统计第一个柱子上元素 \(Now\) 的数量 \(Count\)
从第 \(Now\) 个栈移动 \(Count\) 个元素到第 \(Now+1\) 个栈上(为了预留出位置存放元素 \(Now\))
把第一根柱子的元素分离,是 \(Now\) 的放到栈 \(Now\) 内,不是的放到栈 \(Now+1\) 内
从栈 \(Now+1\) 移动 \(m-Count\) 个元素到第一个柱子(为第二个柱子让位)
把第二个栈内不是 \(Now\) 的元素移动到第一个栈上,放不开了就放到第 \(Now+1\) 个栈内
\(\text{swap}\) 分别交换第一和第 \(Now\),第二和第 \(Now+1\) 个栈(这样不停操作第一二个栈和枚举的栈 \(Now\) 就可以了)
然后 \(k\) 枚举第一到第 \(Now\) 个栈,分别统计他们里面元素 \(Now\) 的数量,然后把第 \(Now\) 个栈移走相同数量的元素到 \(Now+1\) 上(原因同第二步)
分离当前枚举到的栈内的元素,把元素 \(Now\) 都放到栈 \(Now\) 内,其他的都放到栈 \(Now+1\) 内
\(\text{swap}\) 分别交换第 \(k\) 和第 \(Now\),第 \(k\) 和第 \(Now+1\) 个栈(证明栈 \(Now\) 已被处理完,之后不会再对其操作)
然后把第一到第 \(Now\) 个栈上方的 \(Now\) 元素都移到栈 \(Now+1\) 上,放上栈 \(Now\) 内的元素 \(Now\)(此时栈 \(Now\) 上方全是元素 \(Now\))
如此,可以处理完所有的颜色
然而,这个方法并不适用于 \(n=2\) 的情况
原因是当枚举第一个颜色时,第 \(Now+1\) 个栈就是第二个栈
所以要特判处理
移动规则与 \(n\geq3\) 时大同小异
无非是
统计第一栈内元素 \(1\) 的个数,然后从第二栈移动相同的数量到第三栈
分离第一栈,把元素 \(1\) 放到第二栈上,其他的放到第三栈上
然后把第二栈上的元素 \(1\) 移回第一栈,使第一栈此时只有元素 \(1\)
从第三栈移动 \(m-Count\) 个元素到第一栈,剩下的移回第二栈
把那 \(m-Count\) 个元素移回去
分离第二栈,是 \(1\) 的放回第一栈,不是的放回第三栈
因为一种只有两种元素,且可以确定第一栈全为 \(1\) ,第三栈全为 \(2\)
所以至此问题得到解决
极限操作次数为 \(\sum_{i=1}^n im + 5m\),大概需要 \(600000\) 次,时间复杂度同操作次数
Code
#include<bits/stdc++.h>
#define rr register
#define maxn 410
#define maxm 850010
using namespace std;
int n,m,cnt[maxn],fr[maxm],to[maxm];
int Col[maxn][maxn],P[maxn];
int Ans;
//Col[i][j]第 i 根柱子上的第 j 个球的颜色
//P[i]第 i 跟柱子
//cnt[i]当前柱子上球的数量
inline int Read(){
int s=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=(s<<1)+(s<<3)+ch-'0',ch=getchar();
return s*w;
}
inline int Get_Count(int x,int y){
int ans=0;
for(int i=1;i<=m;i++) if(Col[x][i]==y) ans++;
return ans;
}
inline void Move_Ball(int x,int y){
fr[++Ans]=x;to[Ans]=y;
Col[y][++cnt[y]]=Col[x][cnt[x]--];
}
inline int Top(int x){return Col[x][cnt[x]];}
int main(){
n=Read();m=Read();
for(rr int i=1;i<=n;i++){cnt[i]=m;for(rr int j=1;j<=m;j++) Col[i][j]=Read();}
for(rr int i=1;i<=n+1;i++) P[i]=i;cnt[n+1]=0;
for(rr int Now=n;Now>=3;Now--){
int Count=Get_Count(P[1],Now);
for(rr int i=1;i<=Count;i++) Move_Ball(P[Now],P[Now+1]);
for(rr int i=1;i<=m;i++) if(Top(P[1])==Now) Move_Ball(P[1],P[Now]);else Move_Ball(P[1],P[Now+1]);
for(rr int i=1;i<=m-Count;i++) Move_Ball(P[Now+1],P[1]);
for(rr int i=1;i<=m;i++) if(Top(P[2])==Now||cnt[P[1]]==m) Move_Ball(P[2],P[Now+1]);else Move_Ball(P[2],P[1]);
swap(P[1],P[Now]);swap(P[2],P[Now+1]);
for(rr int k=1;k<Now;k++){
Count=Get_Count(P[k],Now);
for(rr int i=1;i<=Count;i++) Move_Ball(P[Now],P[Now+1]);
for(rr int i=1;i<=m;i++) if(Top(P[k])==Now) Move_Ball(P[k],P[Now]);else Move_Ball(P[k],P[Now+1]);
swap(P[k],P[Now+1]);swap(P[k],P[Now]);
}
for(rr int i=1;i<Now;i++) while(Top(P[i])==Now) Move_Ball(P[i],P[Now+1]);
for(rr int i=1;i<Now;i++) while(cnt[P[i]]<m) Move_Ball(P[Now],P[i]);
}
int Count=Get_Count(P[1],1);
for (rr int i=1;i<=Count;i++) Move_Ball(P[2],P[3]);
for (rr int i=1;i<=m;i++) if (Top(P[1])==1) Move_Ball(P[1],P[2]);else Move_Ball(P[1],P[3]);
for (rr int i=1;i<=Count;i++) Move_Ball(P[2],P[1]);
for (rr int i=1;i<=m-Count;i++) Move_Ball(P[3],P[1]);
while (cnt[P[3]]) Move_Ball(P[3],P[2]);
for (rr int i=1;i<=m-Count;i++) Move_Ball(P[1],P[3]);
for (rr int i=1;i<=m;i++) if (Top(P[2])==1) Move_Ball(P[2],P[1]);else Move_Ball(P[2],P[3]);
printf("%d\n",Ans);for(int i=1;i<=Ans;i++) printf("%d %d\n",fr[i],to[i]);
return 0;
}
NOIP2020 移球游戏的更多相关文章
- P7115-[NOIP2020]移球游戏【构造】
正题 题目链接:https://www.luogu.com.cn/problem/P7115 题目大意 \(n+1\)个柱子,前面\(n\)个上面各有\(m\)个球,球有\(n\)种颜色,每种\(m\ ...
- nyist 518 取球游戏
http://acm.nyist.net/JudgeOnline/problem.php?pid=518 取球游戏 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 今 ...
- 躲避球游戏ios源码
躲避球游戏源码,有限源码是一个基于cocos2d的躲避球游戏源码的,并且还引用了大家熟悉google广告的,进行推广,已经还有带game center等,游戏操作很简单,用手指按住物体,然后移动物体避 ...
- 取球游戏|2012年蓝桥杯B组题解析第十题-fishers
(25')取球游戏 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出 ...
- 取球游戏_nyoj_518(博弈-蓝桥杯原题).java
取球游戏 时间限制: 1000 ms | 内存限制: 65535 KB 难度: 2 描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下 ...
- nyoj_518_取球游戏_201404161738
取球游戏 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个 ...
- 放球游戏B
题目描述 校园里在上活动课,Red和Blue两位小朋友在玩一种游戏,他俩在一排N个格子里,自左到右地轮流放小球,每个格子只能放一个小球.第一个人只能放1个球,之后的人最多可以放前一个人的两倍数目的球, ...
- 【题解】放球游戏B
题目描述 校园里在上活动课,Red和Blue两位小朋友在玩一种游戏,他俩在一排N个格子里,自左到右地轮流放小球,每个格子只能放一个小球.第一个人只能放1个球,之后的人最多可以放前一个人的两倍数目的球, ...
- 【题解】放球游戏A
题目描述 校园里在上活动课,Red和Blue两位小朋友在玩一种游戏,他俩在一排N个格子里,自左到右地轮流放小球,每个格子只能放一个小球.每个人一次只能放1至5个球,最后面对没有空格而不能放球的人为输. ...
随机推荐
- CODING 静态网站服务升级,快速、稳定、高拓展!
CODING 静态网站拥有强大的页面托管服务,目前已有数万开发者.设计师.产品经理.团队与企业使用 CODING 静态网站托管了他(她)们的个人网站.博客.企业与产品官网.在线文档等.CODING 静 ...
- [LeetCode]662. Maximum Width of Binary Tree判断树的宽度
public int widthOfBinaryTree(TreeNode root) { /* 层序遍历+记录完全二叉树的坐标,左孩子2*i,右孩子2*i+1 而且要有两个变量,一个记录本层节点数, ...
- [leetcode712] Minimum ASCII Delete Sum for Two Strings
public int minimumDeleteSum(String s1, String s2) { /* 标准的动态规划题目,难点在于想出将两个字符串删除到相同的过程 这里从两个字符串的开头字符考 ...
- Mapreduce实例--求平均值
求平均数是MapReduce比较常见的算法,求平均数的算法也比较简单,一种思路是Map端读取数据,在数据输入到Reduce之前先经过shuffle,将map函数输出的key值相同的所有的value值形 ...
- 指令重排序 as-if-serial
笔者认为看完一本书或刚要了解完一个知识点 最好自己先运行一些DEMO 自己尝试着去了解下各种意思 这样知识点最终一定是你的.靠死记硬背的讨论或简单的粗暴的看下资料 脑子里肯定还是一团浆糊. p.p ...
- OpenWRT19.07_命令行_重拨wan_重启路由
OpenWRT19.07_命令行_重拨wan_重启路由 转载注明来源: 本文链接 来自osnosn的博客,写于 2020-10-19. 写OpenWRT的脚本时,需要用到一些重启命令 以下的命令中的参 ...
- springboot项目打war包流程
目前,前后端分离的架构已成主流,因此使用springboot构建应用是非常快速的,项目发布到服务器上的时候,只需要打成一个jar包,然后通过命令 : java -jar jar包名称即可启动服务了:但 ...
- 【Redis3.0.x】配置文件
Redis3.0.x 配置文件 概述 Redis 的配置文件位于Redis安装目录下,文件名为 redis.conf. 可以通过 CONFIG 命令查看或设置配置项. Redis 命令不区分大小写. ...
- LeetCode232 用栈实现队列
使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部. pop() -- 从队列首部移除元素. peek() -- 返回队列首部的元素. empty() -- 返回队列是否为空. ...
- 在CentOS上安装Singularity高性能容器
什么是singularity容器 Singularity是劳伦斯伯克利国家实验室专门为大规模.跨节点HPC和DL工作负载而开发的容器化技术.具备轻量级.快速部署.方便迁移等诸多优势,且支持从Docke ...