前言:鸣谢https://www.luogu.com.cn/blog/virus2017/shuweidp。感谢大佬orz

-----------------------------

【引入】

首先要明白数位DP解决的是什么问题。

问题:求出在$[L,R]$内满足条件$f(i)$的$i$的个数。$f(i)$一般不与数的大小有关,而是与数的组成有关。(数的大小对复杂度的影响很小)

【设计搜索】

数位DP一般都用记忆化搜索来实现。

一、记搜过程

从起点向下搜索,到最底层得到方案数,一层一层向上返回答案并累加,最后从搜索起点得到最终答案。

对于$[l,r]$区间问题,我们一般把他转化为两次数位dp,即找$[0,r]$和$[0,l-1]$两段,再将结果相减就得到了我们需要的$[l,r]$。

二、状态设计

问:$dfs$函数需要哪些参量?

1.首先是记录位置的$pos$,记录答案的$st$,最高位限制$limit$。

2.判断前导0的标记$lead$。

3.因为数位DP一般与数的组成有关,所以当前位可能要与前几位进行比较。所以要设置$pre$用来表示前几位。

4.有可能会有其他参量,依据题意而定。

数位DP中能记录的状态最好都记录下来。

【细节分析】

一、前导0标记$lead$

例如,寻找$[0,1000]$内任意相邻两数相等的数。

由题意得:$111,222,888$等都符合题意。但右端点$1000$是四位数,因此我们要从$0000$开始搜,那么$0000$符合题意但$0111,0222,0888$都不符合题意了。

所以我们要加一个前导0标记。

  1.如果当前位是0并且前导0标记$lead$是1,那么$pos+1$继续深搜。

  2.如果前导0标记是1但当前位不是0,那么此位作为最高位继续深搜(注意此时传递参量可能发生变化)。

当然有时候前导0是不需要记录的,因题而异。如果是研究数字组成的话一般就不用标记前导0。

二、最高位标记$limit$

例如,在搜索$[0,555]$时,显然最高位搜索范围是$[0,5]$,而后面的搜索根据最高位搜索发生变化:

  1.当最高位是$[1,4]$时,显然后面范围是$[0,9]$。

  2.当最高位是$5$时,第二位的范围是$[0,5]$。

为了区分两种情况:我们引入$limit$标记:

  1.当前位$limit=1$且取到最高位时,下一位$limit=1$。

  2.当前位$limit=1$但没有取到最高位时,下一位$limit=0$。

  3.当前位$limit=0$,则下一位$limit=0$。

我们设这一位标记是$limit$,能取到的最高位是$res$,那么下一位的标记就是(i==res)$$limit。

三、DP值的记录与使用

DP数组下标记录的是状态,所以如果当前状态和之前搜过的状态完全一样,我们就可以不用继续深搜,直接返回值即可。

举个例子:

假如我们搜索$[0,123456]$中符合条件的数。

现在搜到了$1000??$,我们记录下来了当前位是第五位,且前一位是0的值。

下一次,我们搜到了$1010??$,我们可以不用再深搜,直接返回之前搜过的值即可。

但是!!!!!

假如现在我们搜到了$1234??$我们可不可以返回当前位是第五位,且前一位是4的值?

当然不行。因为之前的值第五位取值范围是$[0,9]$,而现在取值范围是$[0,5]$,答案数显然不一样,不能混为一谈。

联系之前的知识,我们很容易想到:此时$limit=1$。

因此我们得到一个结论:当$limit=1$时,不能记录和取用DP值。

同样,当$lead=1$时,不能记录和取用DP值。

当然,这还是要看具体题意的。在使用DP数组的过程中也可以把所有状态记录下来,就没有那么多麻烦事了……

【模板】

ll dfs(int pos,int pre,int st,……,int lead,int limit)//记搜
{
if(pos>len) return st;//剪枝
if((dp[pos][pre][st]……[……]!=-&&(!limit)&&(!lead))) return dp[pos][pre][st]……[……];//记录当前值
ll ret=;//暂时记录当前方案数
int res=limit?a[len-pos+]:;//res当前位能取到的最大值
for(int i=;i<=res;i++)
{
//有前导0并且当前位也是前导0
if((!i)&&lead) ret+=dfs(……,……,……,i==res&&limit);
//有前导0但当前位不是前导0,当前位就是最高位
else if(i&&lead) ret+=dfs(……,……,……,i==res&&limit);
else if(根据题意而定的判断) ret+=dfs(……,……,……,i==res&&limit);
}
if(!limit&&!lead) dp[pos][pre][st]……[……]=ret;//当前状态方案数记录
return ret;
}
ll part(ll x)//把数按位拆分
{
len=;
while(x) a[++len]=x%,x/=;
memset(dp,-,sizeof dp);//初始化-1(因为有可能某些情况下的方案数是0)
return dfs(……,……,……,……);//进入记搜
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&l,&r);
if(l) printf("%lld",part(r)-part(l-));//[l,r](l!=0)
else printf("%lld",part(r)-part(l));//从0开始要特判
}
return ;
}

【题目推荐】

【SCOI2009】Windy数

【ZJOI2010】数字计数

【CQOI2016】手机号码

【AHOI2009】同类分布

【SCOI2014】方伯伯的商场之旅

题目难度按照次序。T5比较难,思维题。

-----------------------------------------

后记:我再也不说数位DP是板子题这种话了QAQ

数位DP 学习笔记的更多相关文章

  1. 数位DP学习笔记

    数位DP学习笔记 什么是数位DP? 数位DP比较经典的题目是在数字Li和Ri之间求有多少个满足X性质的数,显然对于所有的题目都可以这样得到一些暴力的分数 我们称之为朴素算法: for(int i=l_ ...

  2. DP学习笔记

    DP学习笔记 可是记下来有什么用呢?我又不会 笨蛋你以后就会了 完全背包问题 先理解初始的DP方程: void solve() { for(int i=0;i<;i++) for(int j=0 ...

  3. MMM 数位dp学习记

    数位dp学习记 by scmmm 开始日期 2019/7/17 前言 状压dp感觉很好理解(本质接近于爆搜但是又有广搜的感觉),综合了dp的高效性(至少比dfs,bfs优),又能解决普通dp难搞定的问 ...

  4. 树形DP 学习笔记

    树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...

  5. 数位DP复习笔记

    前言 复习笔记第五篇.(由于某些原因(见下),放到了第六篇后面更新)CSP-S RP++. luogu 的难度评级完全不对,所以换了顺序,换了别的题目.有点乱,见谅.要骂就骂洛谷吧,原因在T2处 由于 ...

  6. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  7. bzoj 1026: [SCOI2009]windy数 & 数位DP算法笔记

    数位DP入门题之一 也是我所做的第一道数位DP题目 (其实很久以前就遇到过 感觉实现太难没写) 数位DP题目貌似多半是问从L到R内有多少个数满足某些限制条件 只要出题人不刻意去卡多一个$log$什么的 ...

  8. 动态 DP 学习笔记

    不得不承认,去年提高组 D2T3 对动态 DP 起到了良好的普及效果. 动态 DP 主要用于解决一类问题.这类问题一般原本都是较为简单的树上 DP 问题,但是被套上了丧心病狂的修改点权的操作.举个例子 ...

  9. [总结] 动态DP学习笔记

    学习了一下动态DP 问题的来源: 给定一棵 \(n\) 个节点的树,点有点权,有 \(m\) 次修改单点点权的操作,回答每次操作之后的最大带权独立集大小. 首先一个显然的 \(O(nm)\) 的做法就 ...

随机推荐

  1. 什么?你还不会通过纯js提交表单?

    如果程序已经封装好了, 不管后台是java .asp.net   .还是php   ?这个时候你的客户突然追加说我要 追加表单验证?   what  妇产科    怎么办? submit  自带刷新效 ...

  2. java语法学习

    // 单行注释 /* 多行注释 */ /** JavaDoc(Java文档)注释是这样的.可以用来描述类和类的属性. */ // 导入 java.util中的 ArrayList 类 import j ...

  3. ElasticSearch 定时批量删除N天前的数据

    描述: 之前我已经完成了使用ElasticSearch.kibana.filebeat.三个工具完成分布式集群收集 分布在各个ip地址上的微服务日志,这样就可以统一的在一个服务器上查看了所有的微服务产 ...

  4. 数据可视化之DAX篇(二十七)半累加度量,在Power BI 中轻松处理

    https://zhuanlan.zhihu.com/p/96823622 ​开始半累加的计算之前,我们先看看什么是累加.半累加以及不可累加数据. 在含有大量行的数据表中,各种数据处理语言,包括DAX ...

  5. 前端03 /css简绍/css选择器

    前端03 /css简绍/css选择器 目录 前端03 /css简绍/css选择器 昨日内容回顾 html标签 常用标签 table标签:表格标签 input标签 select下拉框 textarea多 ...

  6. 曹工改bug--本来以为很简单的数据库字段长度不足的问题,最后竟然靠抓包才解决

    问题描述 这两天本来忙着新功能开发,结果之前的一个项目最近要上了,然后又在测试,然后就喜提bug一枚(not mine),看bug描述,很简单,而且本地环境也重现了,只要刷入2000个英文字符就可以复 ...

  7. echarts 实战 : 想让图例颜色和元素颜色对应,怎么办?

    首先,在 series 里设置颜色. (我是用js生成 echarts 需要的option对象,所以可能很难看懂) normalData.sData.forEach((item, index) =&g ...

  8. p72_电子邮件

    一.电子邮件格式 信封 abcd@xx.com 内容 2.1 首部(To, Subject)-> (From,To,Subject,Date) 2.2 主体 二.电子邮件组成结构 三.SMTP ...

  9. Oracle修改表类型方法

    有一个表名为tb,字段段名为name,数据类型nchar(20). 1.假设字段数据为空,则不管改为什么字段类型,可以直接执行:alter table tb modify (name nvarchar ...

  10. pyhton 3.6 pip 出现 Fatal error in launcher: Unable to create process using 解决方法

    ERROR:Fatal error in launcher: Unable to create process using '"' 出现这个  打开  终端  输入 python36 -m ...