二叉排序树
1 先看一个需求
给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加
 
2 解决方案分析
 使用数组
数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢. 
数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位
置后,后面的数据需整体移动,速度慢。
 使用链式存储-链表
不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。
 使用二叉排序树
 
3 二叉排序树介绍
  二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当
前节点的值小,右子节点的值比当前节点的值大。
  特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
  比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

4 二叉排序树创建和遍历
一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创
建成对应的二叉排序树为 : 

5 二叉排序树的删除
二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
1) 删除叶子节点 (比如:2, 5, 9, 12)
2) 删除只有一颗子树的节点 (比如:1)
3) 删除有两颗子树的节点. (比如:7, 3,10 )
4) 操作的思路分析

对删除结点的各种情况的思路分析:
第一种情况:
删除叶子节点 (比如:2, 5, 9, 12)
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 是 parent 的左子结点 还是右子结点
(4) 根据前面的情况来对应删除
左子结点 parent.left = null
右子结点 parent.right = null;
第二种情况: 删除只有一颗子树的节点 比如 1
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 的子结点是左子结点还是右子结点
(4) targetNode 是 parent 的左子结点还是右子结点
(5) 如果 targetNode 有左子结点
(5). 1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.left;
(5).2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.left;
(6) 如果 targetNode 有右子结点
(6).1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.right;
(6).2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.righ
情况三 : 删除有两颗子树的节点. (比如:7, 3,10 )
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 从 targetNode 的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存 temp = 11
(5) 删除该最小结点
(6) targetNode.value = temp
 
6 二叉排序树删除结点的代码实现
package com.lin.binarysorttree_0314;

public class BinarySortTreeTest {

    public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9};
BinarySortTree binarySortTree = new BinarySortTree();
for (int i = 0; i < arr.length; i++) {
binarySortTree.add(new SNode(arr[i]));
} binarySortTree.add(new SNode(2));
binarySortTree.infixOrder(); // 删除
System.out.println("***********"); binarySortTree.delNode(2);
binarySortTree.delNode(3);
binarySortTree.delNode(5);
binarySortTree.delNode(7);
binarySortTree.delNode(9);
binarySortTree.delNode(12);
System.out.println("root:" + binarySortTree.getRoot()); binarySortTree.infixOrder();
}
} class BinarySortTree{
private SNode root;
// 查找要删除的节点
public SNode getRoot() {
return root;
}
public SNode searchDelNode(int value) {
if(root == null) {
return null;
} else {
return root.searchDelNode(value);
}
}
// 查找要删除节点的父节点
public SNode searchParent(int value) {
if(root == null) {
return null;
} else {
return root.searchParent(value);
}
}
/**
* @param node 传入的节点(当作二叉排序树的根节点)
* @return 返回的以node为根节点的二叉排序树的最小节点的值
*/
public int delRightTreeMin(SNode node) {
SNode target = node;
// 循环地查找左节点,就会找到最小值
while(target.left != null) {
target = target.left;
}
delNode(target.value);// !!!!
return target.value;// !!!!!
} // 删除节点
public void delNode(int value) {
if(root == null) {
return;
} else {
// 找删除节点
SNode targetNode = searchDelNode(value);
// 没有找到
if(targetNode == null) {
return;
}
// 如果发现当前这棵二叉树只有一个节点
if(root.left == null && root.right == null) {
root = null;
return;
}
// 去找到targetNode的父节点
SNode parent = searchParent(value);
// 如果删除的节点是叶子节点
if(targetNode.left == null && targetNode.right == null) {
// 判断targetNode是父节点的左子节点还是右子节点
if(parent.left != null && parent.left.value == value) {
parent.left = null;
} else if(parent.right != null && parent.right.value == value) {
parent.right = null;
}
} else if(targetNode.left != null && targetNode.right != null) { // 有左右子节点
int delRightTreeMin = delRightTreeMin(targetNode.right);
targetNode.value = delRightTreeMin;
} else {// 只有一个子节点
// 要删除的节点只有左节点
if(targetNode.left != null) {
if(parent != null) {
// 如果targetNode是parent的左子节点
if(parent.left.value == value) {
parent.left = targetNode.left;
} else {
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else {// 要删除的节点有右子节点
if(parent != null) {
if(parent.left.value == value) {
parent.left = targetNode.right;
} else {
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
} }
}
// 中序遍历
public void infixOrder() {
if(root == null) {
System.out.println("空树!");
} else {
root.infixOrder();
}
}
// 添加
public void add(SNode node) {
if(root == null) {
root = node;
} else {
root.add(node);
}
}
} class SNode{
protected int value;
protected SNode left;
protected SNode right; public SNode(int value) {
// TODO Auto-generated constructor stub
this.value = value;
} @Override
public String toString() {
// TODO Auto-generated method stub
return "Node = [value = " + value + "]";
} // 添加节点
public void add(SNode node) {
if(node == null) {
return;
}
if(node.value < this.value) {
if(this.left == null) {
this.left = node;
} else {
this.left.add(node);
}
} else {
if(this.right == null) {
this.right = node;
} else {
this.right.add(node);
}
}
}
// 中序遍历
public void infixOrder() {
if(this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if(this.right != null) {
this.right.infixOrder();
}
}
// 查找要删除的节点
public SNode searchDelNode(int value) {
if(this.value == value) {
return this;
} else if(this.value > value) {
// 如果左子节点为空
if(this.left == null) {
return null;
}
return this.left.searchDelNode(value);
} else {
if(this.right == null) {
return null;
}
return this.right.searchDelNode(value);
}
}
// 查找要删除节点的父节点, 如果没有则返回null
public SNode searchParent(int value) {
if(( this.left != null && this.left.value == value)
|| ( this.right != null && this.right.value == value )) {
return this;
} else {
// 如果查找的值小于当前节点的值,并且当前节点的左子节点不为空
if(value < this.value && this.left != null) {
return this.left.searchParent(value);
} else if(value >= this.value && this.right != null) {
return this.right.searchParent(value);
} else {
return null;
}
}
} }

仅供参考,有错误还请指出!

有什么想法,评论区留言,互相指教指教。

觉得不错的可以点一下右边的推荐哟

Java 树结构实际应用 三(二叉排序树)的更多相关文章

  1. Java 处理 XML 的三种主流技术及介绍

    Java 处理 XML 的三种主流技术及介绍 原文地址:https://www.ibm.com/developerworks/cn/xml/dm-1208gub/ XML (eXtensible Ma ...

  2. java解析xml的三种方法

    java解析XML的三种方法 1.SAX事件解析 package com.wzh.sax; import org.xml.sax.Attributes; import org.xml.sax.SAXE ...

  3. 20145213《Java程序设计》实验三敏捷开发与XP实践

    20145213<Java程序设计>实验三敏捷开发与XP实践 实验要求 1.XP基础 2.XP核心实践 3.相关工具 实验内容 1.敏捷开发与XP 软件工程是把系统的.有序的.可量化的方法 ...

  4. 20145213《Java程序设计》第三周学习总结

    20145213<Java程序设计>第三周学习总结 教材学习内容总结 正所谓距离产生美,上周我还倾心于Java表面的基础语法.其简单的流程结构,屈指可数的基本类型分类,早已烂熟于心的运算符 ...

  5. 20145206《Java程序设计》实验三实验报告

    20145206<Java程序设计>实验三实验报告 实验内容 XP基础 XP核心实践 相关工具 实验步骤 (一)敏捷开发与XP 软件工程是把系统的.有序的.可量化的方法应用到软件的开发.运 ...

  6. 20145308刘昊阳 《Java程序设计》实验三 敏捷开发与XP实践 实验报告

    20145308刘昊阳 <Java程序设计>实验三 敏捷开发与XP实践 实验报告 实验名称 敏捷开发与XP实践 实验内容 XP基础 XP核心实践 相关工具 统计的PSP(Personal ...

  7. 20145330《Java程序设计》第三周学习总结

    20145330 <Java程序设计>第三周学习总结 第三周知识的难度已经逐步上升,并且一周学习两章学习压力也逐渐加大,需要更高效率的来完成学习内容,合理安排时间. 类与对象 对象(Obj ...

  8. 20145337《Java程序设计》第三周学习总结

    20145337 <Java程序设计>第三周学习总结 教材学习内容总结 类与对象 类与对象的关系:要产生对象必须先定义类,类是对象的设计图,对象是类的实例.我觉得在视频中对类与对象关系的描 ...

  9. 20145320《Java程序设计》第三次实验报告

    20145320<Java程序设计>第三次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1453 指导教师:娄嘉鹏 实验日期:2016.04.22 15: ...

随机推荐

  1. C++ part9

    1.静态多态和动态多态 静态多态:函数重载,模板.编译期间完成. 动态多态:虚函数.运行期间实现. 2.模板的实现和优缺点 函数模板的代码并不能直接编译成二进制代码,而是要实例出一个模板实例.写了模板 ...

  2. mysql(四)------Mysql中的锁

    1. 2 MySQL InnoDB 锁的基本类型 https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html 官网把锁分成了 8 类.所以我 ...

  3. STM32F107移植LWIP

    STM32F107上移植LWIP2.0.3 因为最近需要在STM32F107上实现TCP/IP协议栈,所以网上查了一下,准备使用LWIP,虽然大多数用的是1.4.1版本但是官方说2系大版本修复了1.4 ...

  4. Github markdown页面内跳转

    基本操作: 请看这里 最典型的就是[alt_content](#jump) 但有时, jump是不太好直接看出来的, 比如下面这个标题, 格式复杂, 那如何获取相应的jump呢? 在Github中, ...

  5. Pygame 游戏开发 All In One

    Pygame 游戏开发 All In One Pygame Pygame is a library for digital arts, games, music, making, and a comm ...

  6. Web API 设计

    Web API 设计 The Design of Web APIs free online ebook https://www.manning.com/books/the-design-of-web- ...

  7. TypeScript & LeetCode

    TypeScript & LeetCode TypeScript In Action TypeScript 复杂类型 编写复杂的 TypeScript 类型 // 方法「只可能」有两种类型签名 ...

  8. 三维码 & 二维码 & 一维码

    三维码 & 二维码 & 一维码 3D, 2D, 1D 防伪国家标准 -<结构三维码防伪技术条件> http://www.xinhuanet.com/tech/2019-12 ...

  9. Python module all in one

    Python module all in one Python Modules https://docs.python.org/3/tutorial/modules.html Fibonacc # F ...

  10. js types & primitive & object

    js types & primitive & object js 数据类型 typeof null // "object" typeof undefined // ...