TCP三次握手、四次挥手理解及可能问为什么?
三次握手:
TCP3次握手连接:浏览器所在的客户机向服务器发出连接请求报文(SYN标志为1),此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。
服务器接收报文后,同意建立连接,向客户机发出确认报文(SYN,ACK标志位均为1)此时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。
客户机接收到确认报文后,再次向服务器发出报文(ACK标志为1),同时客户端进入ESTABLISHED(已建立连接)状态。服务器确认已接收到确认报文进入到ESTABLISHED(已建立连接)状态。此时,TCP连接建立。
四次挥手:
TCP4次挥手断开连接:浏览器所在的客户机发出连接释放报文(FIN标志为1),然后停止发送数据。此时,客户端进入FIN-WAIT-1(终止等待1)状态。
服务器收到连接释放报文后向客户及发出确认报文(ACK标志为1)。此时,服务端就进入了CLOSE-WAIT(关闭等待)状态,客户端就进入FIN-WAIT-2(终止等待2)状态。
服务器传输完毕后,向客户机发送连接释放报文(FIN标志为1)。此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
客户端收到服务器的连接释放报文以后,发出确认报文(ACK标志为1)。此时,客户端就进入了TIME-WAIT(时间等待)状态而服务器已经进入CLOSED状态。然后等待2*MSL(最长报文段寿命)的时间后,释放TCP连接,进入CLOSED状态。此时客户机与服务器之间的TCP连接断开。
为什么要三次握手(为什么不能两次)?
计算机网络》第四版中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。
如果不采用“三次握手”,那么只要服务器发出确认,新的连接就建立了。由于现在客户机并没有发出建立连接的请求,因此不会理睬服务器的确认,也不会向服务器发送数据。但服务器却以为新的运输连接已经建立,并一直等待客户机发来数据。这样,服务器的很多资源就白白浪费掉了。
为什么要四次挥手?
建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。
关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。
TCP三次握手、四次挥手理解及可能问为什么?的更多相关文章
- [转]Linux服务器上11种网络连接状态 和 TCP三次握手/四次挥手详解
一.Linux服务器上11种网络连接状态: 图:TCP的状态机 通常情况下:一个正常的TCP连接,都会有三个阶段:1.TCP三次握手;2.数据传送;3.TCP四次挥手. 注:以下说明最好能结合”图:T ...
- TCP三次握手四次挥手,通俗易懂版
三次握手四次挥手 三次握手 其实很好理解,三次握手就是保证双手都有发送和接受的能力.那么最少三次才能验证完成 即----> 客户端发送---服务端收到----服务端发送-- 1.客户端发送 -- ...
- tcp三次握手四次挥手那些事
建立TCP需要三次握手才能建立,而断开连接则需要四次挥手.三次握手,四次挥手流程图如下: 一.首先看下如何通过三次挥手----------建立连接 首先客户端发送连接请求报文,服务端接受连接后回复AC ...
- 网络 TCP三次握手,四次挥手详解
三次握手,四次挥手可以说是炙手可热的面试题了,来看看它究竟长什么样子吧! 我们先把流程图贴上来 : 为什么这么复杂? 因为TCP是可靠性传输. 确认可靠传输的前提: TCP连接管理机制 用TCP首部 ...
- TCP三次握手四次挥手详解
转载 http://www.cnblogs.com/zmlctt/p/3690998.html 相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需 ...
- TCP三次握手四次挥手详解2
相对应socket开发者,TCP创建过程和连接拆除过程是由TCP/IP协议栈自动创建的,因此开发者并不需要控制这个过程,但是对于理解TCP底层运作机制,相当有帮助 TCP三次握手 所谓三次握手,是指建 ...
- TCP三次握手/四次挥手详解
一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负责不同的通信功能.包含以下四个层次: 1. 链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程 ...
- TCP 三次握手四次挥手, ack 报文的大小.tcp和udp的不同之处、tcp如何保证可靠的、tcp滑动窗口解释
一.TCP三次握手和四次挥手,ACK报文的大小 首先连接需要三次握手,释放连接需要四次挥手 然后看一下连接的具体请求: [注意]中断连接端可以是Client端,也可以是Server端. [注意] 在T ...
- wireshark抓包直观图解 TCP三次握手/四次挥手详解
转http://www.seanyxie.com/category/linux/ 作者:seanyxie | 一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负 ...
- 转---tcp三次握手四次挥手syn fin......
http://blog.chinaunix.net/uid-22312037-id-3575121.html转自 一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协 ...
随机推荐
- C#设计模式之7-桥接模式
桥接模式(Bridge Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/401 访问. 桥接模式属于结构 ...
- LeetCode 90 | 经典递归问题,求出所有不重复的子集II
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第56篇文章,我们一起来看看LeetCode第90题,子集II(Subsets II). 这题的官方难度是Medi ...
- 存储系列之 共享文件:链接link
一.link与unlink的定义 1.link link是Linux文件系统目录管理的一个系统调用,创建一个链接,该链接只是创建一个目录项,上文ext2的介绍中提到过目录项是<文件名,inode ...
- 面试中的老大难-mysql事务和锁,一次性讲清楚!
众所周知,事务和锁是mysql中非常重要功能,同时也是面试的重点和难点.本文会详细介绍事务和锁的相关概念及其实现原理,相信大家看完之后,一定会对事务和锁有更加深入的理解. 本文主要内容是根据掘金小册& ...
- 通过C#实现OPC-UA服务端(二)
前言 通过我前面的一篇文件,我们已经能够搭建一个OPC-UA服务端了,并且也拥有了一些基础功能.这一次咱们就来了解一下OPC-UA的服务注册与发现,如果对服务注册与发现这个概念不理解的朋友,可以先百度 ...
- Android 用versionName判断版本大小(是否进行版本更新)
一般情况下都是用versionCode进行版本大小的判断从而进行判断是否进行app的更新,但是有可能从网站上爬下来的versionCode不准确,有的网站叫做build,所以用versionName进 ...
- java实现高斯平滑
高斯模糊也叫作高斯平滑,这里主要用来实现图像降噪.官方有入门教程:http://opencv-java-tutorials.readthedocs.io/en/latest/ 实现代码如下: pack ...
- Java数据结构——红黑树
红黑树介绍红黑树(Red-Black Tree),它一种特殊的二叉查找树.执行查找.插入.删除等操作的时间复杂度为O(logn). 红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点 ...
- 跟我一起学.NetCore之日志(Log)模型核心
前言 鲁迅都说:没有日志的系统不能上线(鲁迅说:这句我没说过,但是在理)!日志对于一个系统而言,特别重要,不管是用于事务审计,还是用于系统排错,还是用于安全追踪.....都扮演了很重要的角色:之前有很 ...
- 这么高颜值的Kubernetes管理工具Lens,难道还不能C位出道吗
1 前言 欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章! Docker & Kubernetes相关文章:容器技术 一直使用官方的Kubernetes Dashboard来管 ...