BZOJ1294 洛谷P2566 状态压缩DP 围豆豆
题目描述
是不是平时在手机里玩吃豆豆游戏玩腻了呢?最近MOKIA手机上推出了一种新的围豆豆游戏,大家一起来试一试吧游戏的规则非常简单,在一个N×M的矩阵方格内分布着D颗豆子,每颗豆有不同的分值Vi。游戏者可以选择任意一个方格作为起始格,每次移动可以随意的走到相邻的四个格子,直到最终又回到起始格。最终游戏者的得分为所有被路径围住的豆豆的分值总和减去游戏者移动的步数。矩阵中某些格子内设有障碍物,任何时刻游戏者不能进入包含障碍物或豆子的格子。游戏者可能的最低得分为0,即什么都不注意路径包围的概念,即某一颗豆在路径所形成的多边形(可能是含自交的复杂多边形)的内部。下面有两个例子:
第一个例子中,豆在路径围成的矩形内部,所以豆被围住了。第二个例子中,虽然路径经过了豆的周围的8个格子,但是路径形成的多边形内部并不包含豆,所以没有围住豆子。
布布最近迷上了这款游戏,但是怎么玩都拿不了高分。聪明的你决定写一个程序来帮助他顺利通关。
输入格式
第一行两个整数N和M,为矩阵的边长。
第二行一个整数D,为豆子的总个数。
第三行包含D个整数V1到VD,分别为每颗豆子的分值。
接着N行有一个N×M的字符矩阵来描述游戏矩阵状态,0表示空格,#表示障碍物。而数字1到9分别表示对应编号的豆子。
输出格式
仅包含一个整数,为最高可能获得的分值。
输入输出样例
样例输入
- #
样例输出
38
说明/提示
50%的数据满足1≤D≤3。
100%的数据满足1≤D≤9,1≤N, M≤10,-10000≤Vi≤10000。
分析
一看到是方格中的问题,数据范围又在10以下,显然是状态压缩DP了
这道题的细节比较多,而且用到了位运算,所以有些代码不太好理解,因此我感觉分块讲会比较好理解
问题一、数组的定义
如果你要进行动态规划,肯定要开一个数组存储存储结果
这道题开二维数组显然是不够用的,因为我们既要记录一个点的横坐标,又要记录一个点的纵坐标
我们设f[x][y][s]为走到坐标为(x,y)的点,且状态为S时所走过的路程长度
x,y的含义大家应该很容易就可以理解,关键是状态S
我们可以这样想在方格中最多有9个豆豆,所以我们可以用一个长度为9的二进制数来存储状态
什么意思呢?我们还是来举一个例子
比如说方格中有4个豆子,那么
0 0 0 0 表示你一个豆子也没有围上
0 0 1 0 表示你把第二个豆子围上
0 1 1 1 表示你把第1、2、3个豆子全部围上
这样的话大家应该就可以理解了
这里还需要注意的是,因为我们每一次开始遍历的起点不同,所以最终得到的答案也不同,因此我们每选择一个起点,就要重新将f数组初始化
问题二、围住的判断
只有某一颗豆在路径所形成的多边形(可能是含自交的复杂多边形)的内部时,我们才可以得到这个豆子的价值
我们来举几个例子
我们可以看到,左边的这两幅图中豆豆是可以被围住的,而右边的这两幅图中,豆豆是无法被围住的
那么它们分别有什么特点呢?
我们从豆豆开始向右引一条射线(其实向哪一个方向都可以),如果射线与路径的交点为奇数个,那么豆豆能被围住,反之则不能
(这其实就是射线定理,大家有兴趣的话可以百度一下证明)
这样的话,我们只要判断路径与射线的交点个数是不是就可以了呢
其实还是不行,比如下面这幅图
射线与路径的交点有三个(绿色的圈圈住的部分),但是豆豆没有被包含在里面
所以只有当上下移动时,我们才可以给路径计数,如果是左右水平移动的话,我们就不能算进去
这是对于上下移动的判断,mx、my分别是移动之前点的横纵坐标,nx、ny分别是移动之后点的横纵坐标
ax数组记录的是所有豆豆的横坐标,ay数组记录的是所有豆豆的纵坐标
前面的四个判断是对于上下移动的判断,只有上下移动才可以计数
最后一个判断是判断该路径是否在豆豆的右边(因为我是向右引的射线)
当然你把里面的==都改成>=也可以,但是没有必要,因为你一次只能走一个格子
问题三、怎么由上一个格子的状态ms推出下一个格子的状态ns
先上代码
int solve(int mx,int my,int nx,int ny,int ms){
int ns=ms;
for(int i=;i<=d;i++){
if(((mx==ax[i] && nx<ax[i]) || (mx<ax[i] && nx==ax[i])) && ny>ay[i]){
ns^=(<<(i-));
}
}
return ns;
}
mx、my分别是移动之前点的横纵坐标,nx、ny分别是移动之后点的横纵坐标
ms是上一个格子的状态,ns是下一个格子的状态(什么是状态我们在第一个问题中已经提到过了)
问题四、通过什么来算出f数组呢
我们可以用SPFA,也可以用bfs
不同的是bfs每个元素只会进栈一次,而SPFA可以进很多次
但是实际上你即使用SPFA每个点也只会松弛一次,因为你的路径只会越走越长用bfs和用SPFA没什么区别
但是要注意vis数组的初始化,用bfs的话vis数组必须初始化,但是用SPFA则不用
因为SPFAvis数组最后的状态必定为0
for(int i=;i<mmax;i++){
for(int j=;j<=d;j++){
if(i&(<<(j-))) val[i]+=da[j];
}
}
da[j]是第j个豆子的价值,ans使我们最终要的结果
豆子的总价值减去路程上的花费得出来的结果,最后再取一个最大值显然是我们想要的ans
代码(前面该说的都说了,注释我就少加点)
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
int n,m,d;
int mmax,f[][][<<],da[],val[<<];
struct asd{
int x,y,s;
asd(int aa=,int bb=,int cc=){
x=aa,y=bb,s=cc;
}
};//跑bfs的结构体
char c[][];
int xx[]={,-,,},yy[]={-,,,},ax[],ay[];
//xx,yy枚举走的方向,ax,ay记录豆豆的横纵坐标
int ans=-0x3f3f3f3f;//记录最终价值
int vis[][][<<];//判断该点是否已经遍历过
int solve(int mx,int my,int nx,int ny,int ms){
int ns=ms;
for(int i=;i<=d;i++){
if(((mx==ax[i] && nx<ax[i]) || (mx<ax[i] && nx==ax[i])) && ny>ay[i]){
ns^=(<<(i-));
}
}
return ns;
}
void bfs(int ii,int jj){
queue<asd> q;
q.push(asd(ii,jj,));
memset(f,0x3f,sizeof(f));
memset(vis,,sizeof(vis));
f[ii][jj][]=;
while(!q.empty()){
asd aa=q.front();
q.pop();
int mx=aa.x,my=aa.y,ms=aa.s;
vis[mx][my][ms]=;
for(int i=;i<;i++){
int nx=mx+xx[i],ny=my+yy[i];
if(nx< || ny< || nx>n || ny>m || (c[nx][ny]>='' && c[nx][ny]<='') || c[nx][ny]=='#') continue;
//判断该点是否能走
//注意豆豆所在的方格也不能走
int ns=ms;
if(i&) ns=solve(mx,my,nx,ny,ms);
//只有在上下走的时候才改变状态,否则状态不变
//如果不能理解也可以写成i==1 || i==3
if(vis[nx][ny][ns]==) continue;
//如果已经更新过,就不再更新
if(f[mx][my][ms]<f[nx][ny][ns]){
f[nx][ny][ns]=f[mx][my][ms]+;
vis[nx][ny][ns]=;
q.push(asd(nx,ny,ns));
}
}
}
for(int i=;i<mmax;i++){
ans=max(ans,val[i]-f[ii][jj][i]);
}
}
int main(){
scanf("%d%d%d",&n,&m,&d);
for(int i=;i<=d;i++){
scanf("%d",&da[i]);
}
mmax=<<d;
for(int i=;i<mmax;i++){
for(int j=;j<=d;j++){
if(i&(<<(j-))) val[i]+=da[j];
}
}
for(int i=;i<=n;i++){
scanf("%s",c[i]+);
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(c[i][j]>'' && c[i][j]<=''){
int now=c[i][j]-'';
ax[now]=i,ay[now]=j;
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(c[i][j]==''){
bfs(i,j);
//如果该点为0,就可以作为起点
}
}
}
printf("%d\n",ans);
return ;
}
bfs
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
int n,m,d;
int mmax,f[][][<<],da[],val[<<];
struct asd{
int x,y,s;
asd(int aa=,int bb=,int cc=){
x=aa,y=bb,s=cc;
}
}b[*];
char c[][];
int xx[]={,-,,},yy[]={-,,,},ax[],ay[];
int ans=-0x3f3f3f3f;
int vis[][][<<];
inline int solve(int mx,int my,int nx,int ny,int ms){
int ns=ms;
for(int i=;i<=d;i++){
if(((mx==ax[i] && nx<ax[i]) || (mx<ax[i] && nx==ax[i])) && ny>ay[i]){
ns^=(<<(i-));
}
}
return ns;
}
inline void SPFA(int ii,int jj){
queue<asd> q;
q.push(asd(ii,jj,));
memset(f,0x3f,sizeof(f));
f[ii][jj][]=;
//memset(vis,0,sizeof(vis));
while(!q.empty()){
asd aa=q.front();
q.pop();
int mx=aa.x,my=aa.y,ms=aa.s;
vis[mx][my][ms]=;
for(int i=;i<;i++){
int nx=mx+xx[i],ny=my+yy[i];
if(nx< || ny< || nx>n || ny>m || (c[nx][ny]>='' && c[nx][ny]<='') || c[nx][ny]=='#') continue;
int ns=ms;
if(i&) ns=solve(mx,my,nx,ny,ms);
if(f[mx][my][ms]<f[nx][ny][ns]){
f[nx][ny][ns]=f[mx][my][ms]+;
if(vis[nx][ny][ns]==){
vis[nx][ny][ns]=;
q.push(asd(nx,ny,ns));
}
}
}
}
for(int i=;i<mmax;i++){
ans=max(ans,val[i]-f[ii][jj][i]);
}
}
int main(){
scanf("%d%d%d",&n,&m,&d);
for(int i=;i<=d;i++){
scanf("%d",&da[i]);
}
mmax=<<d;
for(int i=;i<mmax;i++){
for(int j=;j<=d;j++){
if(i&(<<(j-))) val[i]+=da[j];
}
}
for(int i=;i<=n;i++){
scanf("%s",c[i]+);
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(c[i][j]>'' && c[i][j]<=''){
int now=c[i][j]-'';
ax[now]=i,ay[now]=j;
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(c[i][j]==''){
SPFA(i,j);
}
}
}
printf("%d\n",ans);
return ;
}
SPFA
大家一定要注意vis数组的初始化
而且数组不要开太大,否则会T
下面是一个错解,也就是bfs的vis数组没有初始化
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
int n,m,d;
int mmax,f[][][<<],da[],val[<<];
struct asd{
int x,y,s;
asd(int aa=,int bb=,int cc=){
x=aa,y=bb,s=cc;
}
};//跑bfs的结构体
char c[][];
int xx[]={,-,,},yy[]={-,,,},ax[],ay[];
//xx,yy枚举走的方向,ax,ay记录豆豆的横纵坐标
int ans=-0x3f3f3f3f;//记录最终价值
int vis[][][<<];//判断该点是否已经遍历过
int solve(int mx,int my,int nx,int ny,int ms){
int ns=ms;
for(int i=;i<=d;i++){
if(((mx==ax[i] && nx<ax[i]) || (mx<ax[i] && nx==ax[i])) && ny>ay[i]){
ns^=(<<(i-));
}
}
return ns;
}
void bfs(int ii,int jj){
queue<asd> q;
q.push(asd(ii,jj,));
memset(f,0x3f,sizeof(f));
f[ii][jj][]=;
while(!q.empty()){
asd aa=q.front();
q.pop();
int mx=aa.x,my=aa.y,ms=aa.s;
vis[mx][my][ms]=;
for(int i=;i<;i++){
int nx=mx+xx[i],ny=my+yy[i];
if(nx< || ny< || nx>n || ny>m || (c[nx][ny]>='' && c[nx][ny]<='') || c[nx][ny]=='#') continue;
//判断该点是否能走
//注意豆豆所在的方格也不能走
int ns=ms;
if(i&) ns=solve(mx,my,nx,ny,ms);
//只有在上下走的时候才改变状态,否则状态不变
//如果不能理解也可以写成i==1 || i==3
if(vis[nx][ny][ns]==) continue;
//如果已经更新过,就不再更新
if(f[mx][my][ms]<f[nx][ny][ns]){
f[nx][ny][ns]=f[mx][my][ms]+;
if(vis[nx][ny][ns]==){
vis[nx][ny][ns]=;
q.push(asd(nx,ny,ns));
}
}
}
}
for(int i=;i<mmax;i++){
ans=max(ans,val[i]-f[ii][jj][i]);
}
}
int main(){
scanf("%d%d%d",&n,&m,&d);
for(int i=;i<=d;i++){
scanf("%d",&da[i]);
}
mmax=<<d;
for(int i=;i<mmax;i++){
for(int j=;j<=d;j++){
if(i&(<<(j-))) val[i]+=da[j];
}
}
for(int i=;i<=n;i++){
scanf("%s",c[i]+);
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(c[i][j]>'' && c[i][j]<=''){
int now=c[i][j]-'';
ax[now]=i,ay[now]=j;
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(c[i][j]==''){
bfs(i,j);
//如果该点为0,就可以作为起点
}
}
}
printf("%d\n",ans);
return ;
}
错解
但是令人震惊的是,它竟然能过,而且比正解快10倍,只用70ms
引用pl.er()大佬的思路
它之所以快是因为第一次遍历之后vis数组没有初始化,于是在之后的遍历中它们就不会再进栈
但是这样做显然是错误的,比如下面这组数据
正解是992,但是错解却输出990
因此大家一定要注意
BZOJ1294 洛谷P2566 状态压缩DP 围豆豆的更多相关文章
- 洛谷 P1763 状态压缩dp+容斥原理
(题目来自洛谷oj) 一天,maze决定对自己的一块n*m的土地进行修建.他希望这块土地共n*m个格子的高度分别是1,2,3,...,n*m-1,n*m.maze又希望能将这一些格子中的某一些拿来建蓄 ...
- 浅谈状态压缩DP
浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- Python报错:SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape
运行python文件的时候报错: SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2 ...
- vue甘特图gantt
vue做甘特图,先大致介绍下核心功能: (1)横轴.纵轴拖拽: (2)自定义监听点击事件(双击.右键等)(3)任务之间显示父子层级关系:(4)左侧列表信息,右侧时间轴表示任务:(5)每个任务可以订制样 ...
- mysql8.0 Mac下的安装
一.下载及安装 首先去官网下载mac对应版本的Mysql,尾缀为.dmg的程序包 下载地址:https://dev.mysql.com/downloads/mysql/ 二.启动 在 Setting ...
- cnpm的安装(超级详细版)
1. 安装node 打开黑窗口 安装node 网上教程很多,我就不加上了 2.node -v 查看node是否已安装 3.安装淘宝镜像 npm install -g cnpm -registry ...
- [转] Socket通信实例
点击阅读原文 Client端: #include <stdio.h> #include <sys/socket.h> #include <sys/types.h> ...
- Looooops(求解同余方程、同余方程用法)【拓展欧几里得】
Looooops(点击) A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
- 使用torch实现RNN
(本文对https://blog.csdn.net/out_of_memory_error/article/details/81456501的结果进行了复现.) 在实验室的项目遇到了困难,弄不明白LS ...
- Java 从入门到进阶之路(二十三)
在之前的文章我们介绍了一下 Java 中的 集合框架中的Collection 的迭代器 Iterator,本章我们来看一下 Java 集合框架中的Collection 的泛型. 在讲泛型之前我们先来 ...
- C# 9.0 新特性之只读属性和记录
阅读本文大概需要 2 分钟. 大家好,这是 C# 9.0 新特性系列的第 4 篇文章. 熟悉函数式编程的童鞋一定对"只读"这个词不陌生.为了保证代码块自身的"纯洁&quo ...
- 二叉查找树、平衡二叉树(AVLTree)、平衡多路查找树(B-Tree),B+树
B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引. B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的. 在 ...