一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2。显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积。积性函数的卷积还是积性函数,那么线性筛即可。因为μ(pc)=0 (c>=2),所以f(pc)还是比较好算的,讨论一波即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10000001
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,phi[N],mobius[N],prime[N],cnt;
ll f[N];
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4804.in","r",stdin);
freopen("bzoj4804.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
flag[]=;mobius[]=;phi[]=;f[]=;
for (int i=;i<N;i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-,mobius[i]=-,f[i]=i-;
for (int j=;j<=cnt&&prime[j]*i<N;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==)
{
phi[prime[j]*i]=phi[i]*prime[j];
if ((i/prime[j])%prime[j]) f[prime[j]*i]=f[i/prime[j]]*(1ll*prime[j]*prime[j]-*prime[j]+);
else f[prime[j]*i]=f[i]*prime[j];
break;
}
mobius[prime[j]*i]=-mobius[i];
phi[prime[j]*i]=phi[i]*(prime[j]-);
f[prime[j]*i]=f[i]*(prime[j]-);
}
}
for (int i=;i<N;i++) f[i]+=f[i-];
while (T--)
{
n=read();ll ans=;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
ans+=(f[t]-f[i-])*(n/i)*(n/i);
i=t;
}
printf(LL,ans);
}
return ;
}

BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)的更多相关文章

  1. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

  2. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  3. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

  4. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  5. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  6. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  7. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  8. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  9. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

随机推荐

  1. USACO16OPEN_248&&USACO16OPEN_262144_KEY

    题目传送门 这道题比较水,设f[i][j]表示i~j区间合并的最大值. #include <cstdio> #define max(a,b) a>b?a:b using namesp ...

  2. 老曹眼中的Linux基础

    Linux 几乎无处不在,不论是服务器构建,还是客户端开发,对操作系统的基本理解和基础技能的掌握对全栈来说都是必备的. 系统的选择 Linux发行版本大体分为两类,一类是商业公司维护的发行版本,一类是 ...

  3. 2019年1月23日,好像是这个日子,RF发布了 1.7.3.1 支持python3.6以上了,安装成功。

    安装步骤:(win10 家庭版 64) 1.安装Python3.7.2,记得勾选添加Path 2.pip install robotframework 3.pip install wxPython 4 ...

  4. APP性能测试工具-GT(随身调)

    GT(随身调)是APP的随身调测平台,它是直接运行在手机上的“集成调测环境”(IDTE, Integrated Debug Environment).利用GT,仅凭一部手机,无需连接电脑,您即可对AP ...

  5. Javascript打印网页局部的实现方案

    项目中,需要对页面的部分div进行打印,为了保证界面布局不乱,采取了新建iframe的方法. 将需要打印的div放到iframe中,然后调用iframe进行打印,就可以很好的实现局部打印的效果了. 同 ...

  6. Java开发工程师(Web方向) - 04.Spring框架 - 期末测试

    Spring框架客观题 Spring框架编程题 http://blog.csdn.net/sinoacc/article/details/51702458 1 (25分) 假设有如下数据表: crea ...

  7. [USACO09Open] Tower of Hay 干草塔

    为了调整电灯亮度,贝西要用干草包堆出一座塔,然后爬到牛棚顶去把灯泡换掉.干草包会从传送带上运来,共会出现N包干草,第i包干草的宽度是W i ,高度和长度统一为1.干草塔要从底层开始铺建.贝西会选择最先 ...

  8. 爬虫2.1-scrapy框架-两种爬虫对比

    目录 scrapy框架-两种爬虫对比和大概流程 1. 传统spider爬虫 2. crawl型爬虫 3. 循环页面请求 4. scrapy框架爬虫的大致流程 scrapy框架-两种爬虫对比和大概流程 ...

  9. 学习笔记,99乘法表,嵌套while循环

    line = 0 #定义外循环初变量 while line < 9: #外循环判断语句 line += 1 #改变外循环初变量,避免陷入死循环 row = 0 #定义内循环初变量 while r ...

  10. .net转PHP从零开始-环境的搭建

    PHP初级开发环境安装很简单,只需要使用一键安装的phpstudy 下载地址:http://www.phpstudy.net/ 安装后可以看到 这样的界面,设置好相关的配置,然后,选择查看phpinf ...