题目描述

LOJ题面:https://loj.ac/problem/2173

洛谷题面:https://www.luogu.org/problemnew/show/P4609

Solution

[CF960G] Bandit Blues这题的弱化版,直接暴力算斯特林数就好了。

不知道为什么这是省选题但是\(bzoj\)没有...

注意模数是\(1e9+7\)...我以为和原题一样被坑了好久。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long const int maxn = 5e4+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 1e9+7; int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=1ll*a*a%mod) if(x&1) res=1ll*res*a%mod;
return res;
} int fac[maxn],ifac[maxn],n,a,b,s[maxn][203]; int main() {
s[0][0]=1;
for(int i=1;i<maxn;i++)
for(int j=1;j<=200;j++)
s[i][j]=(1ll*s[i-1][j-1]+1ll*(i-1)*s[i-1][j]%mod)%mod;
ifac[0]=fac[0]=1;
for(int i=1;i<=200;i++) fac[i]=1ll*fac[i-1]*i%mod;
ifac[200]=qpow(fac[200],mod-2);
for(int i=199;i;i--) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
int t;read(t);
while(t--) {
read(n),read(a),read(b);
if(!a||!b||n<a+b-1) {puts("0");continue;}
if(n==1) {puts("1");continue;}
write(1ll*s[n-1][a+b-2]*fac[a+b-2]%mod*ifac[a-1]%mod*ifac[b-1]%mod);
}
return 0;
}

[洛谷4609] [FJOI2016]建筑师的更多相关文章

  1. [洛谷P4609] [FJOI2016]建筑师

    洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...

  2. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

  3. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  4. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  5. 洛谷P4608 [FJOI2016]所有公共子序列问题 【序列自动机 + dp + 高精】

    题目链接 洛谷P4608 题解 建个序列自动机后 第一问暴搜 第二问dp + 高精 设\(f[i][j]\)为两个序列自动机分别走到\(i\)和\(j\)节点的方案数,答案就是\(f[0][0]\) ...

  6. 洛谷P4587 [FJOI2016]神秘数(主席树)

    题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...

  7. 洛谷 P4587 [FJOI2016]神秘数

    大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...

  8. 【洛谷4587】 [FJOI2016]神秘数(主席树)

    传送门 BZOJ 然而是权限题 洛谷 Solution 发现题目给出的一些规律,emm,如果我们新凑出来的一个数,那么后面一个数一定是\(sum+1\). 于是就可以主席树随便维护了! 代码实现 #i ...

  9. 【LG4609】[FJOI2016]建筑师

    [LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...

随机推荐

  1. CentOS6.5进不去系统,修复

    今天进系统出现问题了,然后在网上搜索了一下解决方案解决了,把解决方法记录下来,方便以后查阅. 输入root密码 #mount | grep "on /" //得到root用户所在分 ...

  2. 限时购校验小工具&dubbo异步调用实现限

    本文来自网易云社区 作者:张伟 背景 限时购是网易考拉目前比较常用的促销形式,但是前期创建一个限时购活动时需要各个BU按照指定的Excel格式进行选品提报,为了保证提报数据准确,运营需要人肉校验很多信 ...

  3. 关于BLOB/TEXT字段存储设计及性能的简单研究

    简单研究了一下BLOB/TEXT字段对数据库性能的影响,得到一个大概的结论:(未验证) 无论MySQL还是MSSQL,都可以通过把BLOB/TEXT数据存储在行外的方式提高性能 把BLOB/TEXT字 ...

  4. 使用nmon监控得出网络实时速度以及最大、最小、平均网络传送速度

    首先我们得搞清楚几个概念,即什么是网速?什么是带宽? 举两个个例子: 1.家里装网线,宽带提供商说我们的带宽是100兆. 2.用迅雷下载电影,迅雷显示实时的下载速度是每秒3兆,或者说是3MB/s. 这 ...

  5. 「日常训练」湫湫系列故事——设计风景线(HDU-4514)

    题意与分析 中文题目,木得题意的讲解谢谢. 然后还是分解成两个任务:a)判环,b)找最长边. 对于这样一个无向图,强行转换成负权然后bellman-ford算法求最短是难以实现的,所以感谢没有环--我 ...

  6. cf#512 C. Vasya and Golden Ticket

    题目链接 http://codeforces.com/contest/1058/problem/C 这题还是暴力最方便,和的情况最多有n*a[i]  900种把每种都试一遍 #include<b ...

  7. 韦大仙--简单的monkey测试命令行操作及生成log日志保存

    作中,在将apk交给软件测试人员去测试之前,不免要自己先自测,monkey自测是一个不错的选择! 步骤很简单: 1.测试用的手机与电脑连接好USB ,并且安装好驱动(我一般都是通过豌豆荚自动安装的)! ...

  8. caffe Mac 安装

    参考了 https://zhuanlan.zhihu.com/p/24853767 安装caffe的依赖项 brew install --fresh -vd snappy leveldb gflags ...

  9. C do whlie 数数位

    #include <stdio.h> int main(int argc, char **argv) {    //定义两个变量 x 跟 n,n的初始化为0:  int x;  int n ...

  10. cronolog:日志分割工具

    一. 引言 因为tomcat的catalina.out日志无法按照日期自动创建,因此采用cronnlog分割. 二. 安装与配置 1.安装cronolog: yum install -y cronol ...