【bzoj2318】Spoj4060 game with probability Problem 概率dp
题目描述
Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。
现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。
输入
第一行一个正整数t,表示数据组数。
对于每组数据,一行三个数n,p,q。
输出
对于每组数据输出一行一个实数,表示Alice胜利的概率,保留6位小数。
样例输入
1
1 0.5 0.5
样例输出
0.666667
提示
概率dp
这题真是巨坑。。。
f[i]表示i块石头先投者获胜的概率,g[i]表示i块石头后投者获胜的概率。
易推出:
$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}$
$g[i]=\frac{q_0·f[i-1]+(1-q_0)·p_0·g[i-1]}{1-(1-p_0)·(1-q_0)}$
然而这里$p_0$和$q_0$都是目标概率,而题目中的p和q都是几率,
所以需要根据情况决定是否想要正面朝上。
根据方程的推导:
A想让自己获胜的概率最大,即让$f[i]$最大。
假设$g[i-1]-f[i-1]$不等于$0$,把$f[i]$的推导式展开,得:
$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}\\\ \ \ \ \ \ =\frac{(p_0+q_0-p_0·q_0)·f[i-1]+p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac{p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{p_0+q_0-p_0·q_0}{p_0(g[i-1]-f[i-1])}}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{1-q_0+\frac{q_0}{p_0}}{g[i-1]-f[i-1]}}$
显然当$g[i-1]-f[i-1]>0$时,$p_0$越大越好;当$g[i-1]-f[i-1]<0$时,$p_0$越小越好。
$q_0$的推导同理。
于是可以得到结论:
当f[i-1]<g[i-1]时,都想要正面朝上,$p_0=p$,$q_0=q$;
当f[i-1]>g[i-1]时,都不想要正面朝上,$p_0=1-p$,$q_0=1-q$。
但是n太大肿么办?
于是用到概率黑科技:
当n越来越大时,f[n]逐渐趋近于一个定值,而且题目中只要求保留6位小数。
所以就此题而言f[1000+k]可以近似等于f[1000]。
#include <cstdio>
#include <cstring>
double f[1001] , g[1001];
int main()
{
int t;
scanf("%d" , &t);
while(t -- )
{
int n , i;
double p , q;
scanf("%d%lf%lf" , &n , &p , &q);
memset(f , 0 , sizeof(f));
memset(g , 0 , sizeof(g));
if(n > 1000)
n = 1000;
f[0] = 0;
g[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
f[i] = (p * g[i - 1] + (1 - p) * q * f[i - 1]) / (1 - (1 - p) * (1 - q));
g[i] = (q * f[i - 1] + (1 - q) * p * g[i - 1]) / (1 - (1 - p) * (1 - q));
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
}
printf("%.6lf\n" , f[n]);
}
return 0;
}
【bzoj2318】Spoj4060 game with probability Problem 概率dp的更多相关文章
- BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )
概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...
- BZOJ 2318: Spoj4060 game with probability Problem (概率dp)(博弈论)
2318: Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果 ...
- 【BZOJ2318】Spoj4060 game with probability Problem 概率
[BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...
- BZOJ2318: Spoj4060 game with probability Problem
#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #i ...
- 【BZOJ2318】【spoj4060】game with probability Problem 概率DP
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- 嘴巴题8 BZOJ2318: Spoj4060 game with probability Problem
Time Limit: 1 Sec Memory Limit: 128 MB Submit: 555 Solved: 273 [Submit][Status][Discuss] Description ...
- 【BZOJ 2318】 2318: Spoj4060 game with probability Problem(概率DP)
2318: Spoj4060 game with probability Problem Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 371 Sol ...
- 2318: Spoj4060 game with probability Problem
2318: Spoj4060 game with probability Problem Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 356 Sol ...
- Bzoj 2318 Spoj4060 game with probability Problem
2318: Spoj4060 game with probability Problem Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 524 Sol ...
随机推荐
- AngularJS-Learning ui-router angular-transitions
https://github.com/mgechev/AngularJS-Learning https://github.com/angular-ui/ui-router https://github ...
- 【POJ1733】Parity game
[POJ1733]Parity game 题面 vjudge 题解 比较简单的分类并查集 将一个查询操作看作前缀和\(s_r-s_{l-1}\)的奇偶性 将每个点拆成一奇一偶然后分别连边即可 如果一个 ...
- springboot jpa操作redis
SpringBoot使用Redis缓存 (1)pom.xml引入jar包,如下: <dependency> <groupId>org.springframework.boo ...
- Machine Learning Basic Knowledge
常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...
- WPF Issues
Grid row height is star, but the height setting does not work in a prism:region Problem: My original ...
- 汽车后市场:数据入口在哪里?不看你就OUT啦!
当前中国汽车后服务市场基本可分七个大类:包括养护.维修.改装.二手车.汽车配件.相关电商及金融保险等,汽车后市场整个产业链对数据服务都有刚性需求. 数据能为行业服务提高效率,提升商家对于客户以及业务的 ...
- 正则表达式 和 re 模块
正则表达式究竟是什么? 在一些网站注册的时候需要输入手机号码,当你输入一个错误的手机号码的时候,会提示你输入的手机号码格式错误 那么他究竟是如何判断的呢? 我们用Python代码进行表示: phone ...
- 【第一章】Shell 概述
一.什么是Shell? shell是一个命令解释器,它不仅包含大量的命令以实现操作系统的对话,还可以实现定义变量.条件判断.循环控制.函数调用等功能. 作用:解释执行用户输入的命令及程序等. 从键盘输 ...
- POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...
- 【转】Backbone.js学习笔记(一)
文章转自: http://segmentfault.com/a/1190000002386651 基本概念 前言 昨天开始学Backbone.js,写篇笔记记录一下吧,一直对MVC模式挺好奇的,也对j ...