任何分组(groupby)操作都涉及原始对象的以下操作之一。它们是 -

  • 分割对象
  • 应用一个函数
  • 结合的结果

在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数。在应用函数中,可以执行以下操作 -

  • 聚合 - 计算汇总统计
  • 转换 - 执行一些特定于组的操作
  • 过滤 - 在某些情况下丢弃数据

下面来看看创建一个DataFrame对象并对其执行所有操作 -

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) print (df)
Python

执行上面示例代码,得到以下结果 -

    Points  Rank    Team  Year
0 876 1 Riders 2014
1 789 2 Riders 2015
2 863 2 Devils 2014
3 673 3 Devils 2015
4 741 3 Kings 2014
5 812 4 kings 2015
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
9 701 4 Royals 2014
10 804 1 Royals 2015
11 690 2 Riders 2017
Shell

将数据拆分成组

Pandas对象可以分成任何对象。有多种方式来拆分对象,如 -

  • obj.groupby(‘key’)
  • obj.groupby([‘key1’,’key2’])
  • obj.groupby(key,axis=1)

现在来看看如何将分组对象应用于DataFrame对象

示例

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) print (df.groupby('Team'))
Python

执行上面示例代码,得到以下结果 -

<pandas.core.groupby.DataFrameGroupBy object at 0x00000245D60AD518>
Shell

查看分组

import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) print (df.groupby('Team').groups)
Python

执行上面示例代码,得到以下结果 -

{
'Devils': Int64Index([2, 3], dtype='int64'),
'Kings': Int64Index([4, 6, 7], dtype='int64'),
'Riders': Int64Index([0, 1, 8, 11], dtype='int64'),
'Royals': Int64Index([9, 10], dtype='int64'),
'kings': Int64Index([5], dtype='int64')
}
Shell

示例

按多列分组 -

import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df.groupby(['Team','Year']).groups)
Python

执行上面示例代码,得到以下结果 -

{
('Devils', 2014): Int64Index([2], dtype='int64'),
('Devils', 2015): Int64Index([3], dtype='int64'),
('Kings', 2014): Int64Index([4], dtype='int64'),
('Kings', 2016): Int64Index([6], dtype='int64'),
('Kings', 2017): Int64Index([7], dtype='int64'),
('Riders', 2014): Int64Index([0], dtype='int64'),
('Riders', 2015): Int64Index([1], dtype='int64'),
('Riders', 2016): Int64Index([8], dtype='int64'),
('Riders', 2017): Int64Index([11], dtype='int64'),
('Royals', 2014): Int64Index([9], dtype='int64'),
('Royals', 2015): Int64Index([10], dtype='int64'),
('kings', 2015): Int64Index([5], dtype='int64')
}
Shell

迭代遍历分组

使用groupby对象,可以遍历类似itertools.obj的对象。

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) grouped = df.groupby('Year') for name,group in grouped:
print (name)
print (group)
Python

执行上面示例代码,得到以下结果 -

2014
Points Rank Team Year
0 876 1 Riders 2014
2 863 2 Devils 2014
4 741 3 Kings 2014
9 701 4 Royals 2014
2015
Points Rank Team Year
1 789 2 Riders 2015
3 673 3 Devils 2015
5 812 4 kings 2015
10 804 1 Royals 2015
2016
Points Rank Team Year
6 756 1 Kings 2016
8 694 2 Riders 2016
2017
Points Rank Team Year
7 788 1 Kings 2017
11 690 2 Riders 2017
Shell

默认情况下,groupby对象具有与分组名相同的标签名称。

选择一个分组

使用get_group()方法,可以选择一个组。参考以下示例代码 -

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) grouped = df.groupby('Year')
print (grouped.get_group(2014))
Python

执行上面示例代码,得到以下结果 -

   Points  Rank    Team  Year
0 876 1 Riders 2014
2 863 2 Devils 2014
4 741 3 Kings 2014
9 701 4 Royals 2014
Shell

聚合

聚合函数为每个组返回单个聚合值。当创建了分组(group by)对象,就可以对分组数据执行多个聚合操作。

一个比较常用的是通过聚合或等效的agg方法聚合 -

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) grouped = df.groupby('Year')
print (grouped['Points'].agg(np.mean))
Python

执行上面示例代码,得到以下结果 -

Year
2014 795.25
2015 769.50
2016 725.00
2017 739.00
Name: Points, dtype: float64
Shell

另一种查看每个分组的大小的方法是应用size()函数 -

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Team')
print (grouped.agg(np.size))
Python

执行上面示例代码,得到以下结果 -

Team
Devils 2 2 2
Kings 3 3 3
Riders 4 4 4
Royals 2 2 2
kings 1 1 1
Shell

一次应用多个聚合函数

通过分组系列,还可以传递函数的列表或字典来进行聚合,并生成DataFrame作为输出 -

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) grouped = df.groupby('Team')
agg = grouped['Points'].agg([np.sum, np.mean, np.std])
print (agg)
Python

执行上面示例代码,得到以下结果 -

         sum        mean         std
Team
Devils 1536 768.000000 134.350288
Kings 2285 761.666667 24.006943
Riders 3049 762.250000 88.567771
Royals 1505 752.500000 72.831998
kings 812 812.000000 NaN
Shell

转换

分组或列上的转换返回索引大小与被分组的索引相同的对象。因此,转换应该返回与组块大小相同的结果。

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data) grouped = df.groupby('Team')
score = lambda x: (x - x.mean()) / x.std()*10
print (grouped.transform(score))
Python

执行上面示例代码,得到以下结果 -

       Points       Rank       Year
0 12.843272 -15.000000 -11.618950
1 3.020286 5.000000 -3.872983
2 7.071068 -7.071068 -7.071068
3 -7.071068 7.071068 7.071068
4 -8.608621 11.547005 -10.910895
5 NaN NaN NaN
6 -2.360428 -5.773503 2.182179
7 10.969049 -5.773503 8.728716
8 -7.705963 5.000000 3.872983
9 -7.071068 7.071068 -7.071068
10 7.071068 -7.071068 7.071068
11 -8.157595 5.000000 11.618950
Shell

过滤

过滤根据定义的标准过滤数据并返回数据的子集。filter()函数用于过滤数据。

import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
filter = df.groupby('Team').filter(lambda x: len(x) >= 3) print (filter)
Python

执行上面示例代码,得到以下结果 -

    Points  Rank    Team  Year
0 876 1 Riders 2014
1 789 2 Riders 2015
4 741 3 Kings 2014
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
11 690 2 Riders 2017
Shell

在上述过滤条件下,要求返回三次以上参加IPL的队伍。

Pandas分组(GroupBy)的更多相关文章

  1. pandas获取groupby分组里最大值所在的行,获取第一个等操作

    pandas获取groupby分组里最大值所在的行 10/May 2016 python pandas pandas获取groupby分组里最大值所在的行 如下面这个DataFrame,按照Mt分组, ...

  2. Pandas分组统计函数:groupby、pivot_table及crosstab

    利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby.pivot_table及crosstab,以下分别进行介绍. 0.样例数据 df = DataFram ...

  3. Pandas分组运算(groupby)修炼

    Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby() ...

  4. pandas之groupby分组与pivot_table透视表

    zhuanzi: https://blog.csdn.net/qq_33689414/article/details/78973267 pandas之groupby分组与pivot_table透视表 ...

  5. pandas分组统计:groupby,melt,pivot_table,crosstab的用法

    groupby: 分组 melt: 宽表转长表 pivot_table: 长表转宽表,数据透视表 crosstab: 交叉表 / 列联表,主要用于分组频数统计 import numpy as np i ...

  6. pandas分组运算(groupby)

    1. groupby() import pandas as pd df = pd.DataFrame([[1, 1, 2], [1, 2, 3], [2, 3, 4]], columns=[" ...

  7. pandas之groupby分组与pivot_table透视

    一.groupby 类似excel的数据透视表,一般是按照行进行分组,使用方法如下. df.groupby(by=None, axis=0, level=None, as_index=True, so ...

  8. Pandas之groupby分组

    释义 groupby用来分组,调用groupby 之后返回pandas.core.groupby.generic.DataFrameGroupBy,其实就是由一个个格式为(key, 分组后的dataf ...

  9. Pandas分组

    GroupBy技术 分组运算的过程可以用下面的流程图表示出来 import pandas as pd from pandas import Series import numpy as np df = ...

随机推荐

  1. 转载别人的DLL DEll研究

    昨日,编了个DLL和EXE来进行了下测试,exe通过lib静态联编dll,来调用它的导出类,当改变DLL中导出类的结构(eg.成员变量的顺序等),从新发布DLL而不从新联结编译EXE,就会造成错误的执 ...

  2. php strtok()函数用法,及使用时遇到的问题

    strtok()函数:用来将一段字符串分割为子字符串 strtok(string $str, string $token) strtok( string $token) //仅第一次调用$str,以后 ...

  3. window异常处理——except_handler4以及栈展开分析

    以前在15pb学习时候在看雪论坛发的一篇精华帖. 主要是分析在try块中发生嵌套异常时候堆栈是如何平衡的. 就不复制过来了,给个链接http://bbs.pediy.com/showthread.ph ...

  4. 如何实现redis集群?

    由于Redis出众的性能,其在众多的移动互联网企业中得到广泛的应用.Redis在3.0版本前只支持单实例模式,虽然现在的服务器内存可以到100GB.200GB的规模,但是单实例模式限制了Redis没法 ...

  5. “技术产品”面向市场的表达方法思辨——BY Me

    “技术产品”面向市场的表达方法思辨 首先,我们来看看“技术产品”在面向市场去表达的时候,怎么表述是容易被市场接受和理解的,“目标受众是谁?”.“市场切入点是什么?”,做到有的放矢,打动目标受众.切中其 ...

  6. [今日干货]一个吸粉效果也不错的APP

    最近陌陌被封很厉害,今天给大家分享一个吸粉效果也不错的APP——悦跑圈,日吸几百粉没问题~ 1.首先下载APP悦跑圈,用手机号码注册. 2.改写资料和头像,最好用一个女性头像,真实点的,不是网图,增加 ...

  7. less本地环境输出hello-world

    在学任何东西之前, 我就是有个习惯, 先搞定这个东西最最简单的使用方法. 然后在 深入学习, 毫无疑问hello-world一直是那么简单. 准备环境 较新版的高级浏览器. WAMP环境. less. ...

  8. CKEditor的下载、配置与使用

    CKEditor简介: CKEditor 是一款功能强大的开源在线文本编辑器.它所见即所得的特点,使你在编辑时所看到的内容和格式,能够与发布后看到的效果完全一致.CKEditor 完全是基于 Java ...

  9. Delphi 正则表达式语法(3): 匹配范围

    Delphi 正则表达式语法(3): 匹配范围 // [A-Z]: 匹配所有大写字母 var   reg: TPerlRegEx; begin   reg := TPerlRegEx.Create(n ...

  10. Mac OS X下搭建Android开发环境(包括SDK和NDK)

    资源准备:  JDK Eclipse Android SDK Android NDK ADT CDT ANT 搭建Android SDK开发环境: 1.JDK安装,要求版本>1.5, Mac O ...