Spark机器学习2·准备数据(pyspark)
准备环境
anaconda
nano ~/.zshrc
export PATH=$PATH:/anaconda/bin
source ~/.zshrc
echo $HOME
echo $PATH
ipython
conda update conda && conda update ipython ipython-notebook ipython-qtconsole
conda install scipy
PYTHONPATH
export SPARK_HOME=/Users/erichan/garden/spark-1.5.1-bin-hadoop2.6
export PYTHONPATH=${SPARK_HOME}/python/:${SPARK_HOME}/python/lib/py4j-0.8.2.1-src.zip
运行环境
cd $SPARK_HOME
IPYTHON=1 IPYTHON_OPTS="--pylab" ./bin/pyspark
数据
1. 获取原始数据
PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
user_data = sc.textFile("%s/ml-100k/u.user" % PATH)
user_fields = user_data.map(lambda line: line.split("|"))
movie_data = sc.textFile("%s/ml-100k/u.item" % PATH)
movie_fields = movie_data.map(lambda lines: lines.split("|"))
rating_data_raw = sc.textFile("%s/ml-100k/u.data" % PATH)
rating_data = rating_data_raw.map(lambda line: line.split("\t"))
num_movies = movie_data.count()
print num_movies
1682
user_data.first()
u'1|24|M|technician|85711'
movie_data.first()
u'1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0'
rating_data_raw.first()
u'196\t242\t3\t881250949'
2. 探索数据
2.1. 按列统计
num_users = user_fields.map(lambda fields: fields[0]).count()
num_genders = user_fields.map(lambda fields: fields[2]).distinct().count()
num_occupations = user_fields.map(lambda fields: fields[3]).distinct().count()
num_zipcodes = user_fields.map(lambda fields: fields[4]).distinct().count()
ratings = rating_data.map(lambda fields: int(fields[2]))
num_ratings = ratings.count()
max_rating = ratings.reduce(lambda x, y: max(x, y))
min_rating = ratings.reduce(lambda x, y: min(x, y))
mean_rating = ratings.reduce(lambda x, y: x + y) / float(num_ratings)
median_rating = np.median(ratings.collect())
ratings_per_user = num_ratings / num_users
ratings_per_movie = num_ratings / num_movies
print "Users: %d, genders: %d, occupations: %d, ZIP codes: %d" % (num_users, num_genders, num_occupations, num_zipcodes)
Users: 943, genders: 2, occupations: 21, ZIP codes: 795
print "Min rating: %d" % min_rating
Min rating: 1
print "Max rating: %d" % max_rating
Max rating: 5
print "Average rating: %2.2f" % mean_rating
Average rating: 3.53
print "Median rating: %d" % median_rating
Median rating: 4
print "Average # of ratings per user: %2.2f" % ratings_per_user
Average # of ratings per user: 106.00
print "Average # of ratings per movie: %2.2f" % ratings_per_movie
Average # of ratings per movie: 59.00
ratings.stats()
(count: 100000, mean: 3.52986, stdev: 1.12566797076, max: 5, min: 1)
2.2. 使用matplotlib的hist函数绘制直方图
ages = user_fields.map(lambda x: int(x[1])).collect()
hist(ages, bins=20, color='lightblue', normed=True)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16, 10)
count_by_rating = ratings.countByValue()
x_axis = np.array(count_by_rating.keys())
y_axis = np.array([float(c) for c in count_by_rating.values()])
# we normalize the y-axis here to percentages
y_axis_normed = y_axis / y_axis.sum()
pos = np.arange(len(x_axis))
width = 1.0
ax = plt.axes()
ax.set_xticks(pos + (width / 2))
ax.set_xticklabels(x_axis)
plt.bar(pos, y_axis_normed, width, color='lightblue')
plt.xticks(rotation=30)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16, 10)
count_by_occupation = user_fields.map(lambda fields: (fields[3], 1)).reduceByKey(lambda x, y: x + y).collect()
x_axis1 = np.array([c[0] for c in count_by_occupation])
y_axis1 = np.array([c[1] for c in count_by_occupation])
x_axis = x_axis1[np.argsort(y_axis1)]
y_axis = y_axis1[np.argsort(y_axis1)]
pos = np.arange(len(x_axis))
width = 1.0
ax = plt.axes()
ax.set_xticks(pos + (width / 2))
ax.set_xticklabels(x_axis)
plt.bar(pos, y_axis, width, color='lightblue')
plt.xticks(rotation=30)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16, 10)
2.3. 使用countByValue函数统计
count_by_occupation2 = user_fields.map(lambda fields: fields[3]).countByValue()
print "Map-reduce approach:"
print dict(count_by_occupation2)
{u'administrator': 79, u'retired': 14, u'lawyer': 12, u'healthcare': 16, u'marketing': 26, u'executive': 32, u'scientist': 31, u'student': 196, u'technician': 27, u'librarian': 51, u'programmer': 66, u'salesman': 12, u'homemaker': 7, u'engineer': 67, u'none': 9, u'doctor': 7, u'writer': 45, u'entertainment': 18, u'other': 105, u'educator': 95, u'artist': 28}
print ""
print "countByValue approach:"
print dict(count_by_occupation)
{u'administrator': 79, u'writer': 45, u'retired': 14, u'lawyer': 12, u'doctor': 7, u'marketing': 26, u'executive': 32, u'none': 9, u'entertainment': 18, u'healthcare': 16, u'scientist': 31, u'student': 196, u'educator': 95, u'technician': 27, u'librarian': 51, u'programmer': 66, u'artist': 28, u'salesman': 12, u'other': 105, u'homemaker': 7, u'engineer': 67}
2.4. 使用filter转换
def convert_year(x):
try:
return int(x[-4:])
except:
return 1900
years = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x))
years_filtered = years.filter(lambda x: x != 1900)
movie_ages = years_filtered.map(lambda yr: 1998-yr).countByValue()
values = movie_ages.values()
bins = movie_ages.keys()
hist(values, bins=bins, color='lightblue', normed=True)
(array([ 0. , 0.07575758, 0.09090909, 0.09090909, 0.18181818,
0.18181818, 0.04545455, 0.07575758, 0.07575758, 0.03030303,
0. , 0.01515152, 0.01515152, 0.03030303, 0. ,
0.03030303, 0. , 0. , 0. , 0. ,
0. , 0. , 0.01515152, 0. , 0.01515152,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.01515152, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.01515152, 0. , 0. , 0. , 0. ]),
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 72, 76]),
)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16,10)
2.5. 使用groupByKey分组
# to compute the distribution of ratings per user, we first group the ratings by user id
user_ratings_grouped = rating_data.map(lambda fields: (int(fields[0]), int(fields[2]))).groupByKey()
# then, for each key (user id), we find the size of the set of ratings, which gives us the # ratings for that user
user_ratings_byuser = user_ratings_grouped.map(lambda (k, v): (k, len(v)))
user_ratings_byuser.take(5)
[(2, 62), (4, 24), (6, 211), (8, 59), (10, 184)]
user_ratings_byuser_local = user_ratings_byuser.map(lambda (k, v): v).collect()
hist(user_ratings_byuser_local, bins=200, color='lightblue', normed=True)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16,10)
3. 处理转换
3.1. 填充缺失
years_pre_processed = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x)).filter(lambda yr: yr != 1900).collect()
years_pre_processed_array = np.array(years_pre_processed)
# first we compute the mean and median year of release, without the 'bad' data point
mean_year = np.mean(years_pre_processed_array[years_pre_processed_array!=1900])
median_year = np.median(years_pre_processed_array[years_pre_processed_array!=1900])
idx_bad_data = np.where(years_pre_processed_array==1900)[0]
years_pre_processed_array[idx_bad_data] = median_year
print "Mean year of release: %d" % mean_year
Mean year of release: 1989
print "Median year of release: %d" % median_year
Median year of release: 1995
print "Index of '1900' after assigning median: %s" % np.where(years_pre_processed_array == 1900)[0]
Index of '1900' after assigning median: []
4. 提取特征
4.1. 类别特征(norminal变量/ordinal变量)
all_occupations = user_fields.map(lambda fields: fields[3]).distinct().collect()
all_occupations.sort()
# create a new dictionary to hold the occupations, and assign the "1-of-k" indexes
idx = 0
all_occupations_dict = {}
for o in all_occupations:
all_occupations_dict[o] = idx
idx +=1
# try a few examples to see what "1-of-k" encoding is assigned
print "Encoding of 'doctor': %d" % all_occupations_dict['doctor']
print "Encoding of 'programmer': %d" % all_occupations_dict['programmer']
Encoding of 'doctor': 2
Encoding of 'programmer': 14
numpy的zeros函数
K = len(all_occupations_dict)
binary_x = np.zeros(K)
k_programmer = all_occupations_dict['programmer']
binary_x[k_programmer] = 1
print "Binary feature vector: %s" % binary_x
print "Length of binary vector: %d" % K
Binary feature vector: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
- 0. 0.] Length of binary vector: 21
4.2. 派生特征
时间戳转换为类别特征
def extract_datetime(ts):
import datetime
return datetime.datetime.fromtimestamp(ts)
def assign_tod(hr):
times_of_day = {
'morning' : range(7, 12),
'lunch' : range(12, 15),
'afternoon' : range(15, 18),
'evening' : range(18, 23),
'night' : {23,24,0,1,2,3,4,5,6,7}
}
for k, v in times_of_day.iteritems():
if hr in v:
return k
timestamps = rating_data.map(lambda fields: int(fields[3]))
hour_of_day = timestamps.map(lambda ts: extract_datetime(ts).hour)
# now apply the "time of day" function to the "hour of day" RDD
time_of_day = hour_of_day.map(lambda hr: assign_tod(hr))
timestamps.take(5)
[881250949, 891717742, 878887116, 880606923, 886397596]
hour_of_day.take(5)
[23, 3, 15, 13, 13]
time_of_day.take(5)
['night', 'night', 'afternoon', 'lunch', 'lunch']
4.3. 文本特征
def extract_title(raw):
import re
grps = re.search("\((\w+)\)", raw)
if grps:
return raw[:grps.start()].strip()
else:
return raw
raw_titles = movie_fields.map(lambda fields: fields[1])
for raw_title in raw_titles.take(5):
print extract_title(raw_title)
Toy Story
GoldenEye
Four Rooms
Get Shorty
Copycat
movie_titles = raw_titles.map(lambda m: extract_title(m))
# next we tokenize the titles into terms. We'll use simple whitespace tokenization
title_terms = movie_titles.map(lambda t: t.split(" "))
print title_terms.take(5)
[[u'Toy', u'Story'], [u'GoldenEye'], [u'Four', u'Rooms'], [u'Get', u'Shorty'], [u'Copycat']]
flatMap
all_terms = title_terms.flatMap(lambda x: x).distinct().collect()
# create a new dictionary to hold the terms, and assign the "1-of-k" indexes
idx = 0
all_terms_dict = {}
for term in all_terms:
all_terms_dict[term] = idx
idx +=1
num_terms = len(all_terms_dict)
print "Total number of terms: %d" % num_terms
Total number of terms: 2645
print "Index of term 'Dead': %d" % all_terms_dict['Dead']
Index of term 'Dead': 147
print "Index of term 'Rooms': %d" % all_terms_dict['Rooms']
Index of term 'Rooms': 1963
zipWithIndex
all_terms_dict2 = title_terms.flatMap(lambda x: x).distinct().zipWithIndex().collectAsMap()
print "Index of term 'Dead': %d" % all_terms_dict2['Dead']
print "Index of term 'Rooms': %d" % all_terms_dict2['Rooms']
Index of term 'Dead': 147
Index of term 'Rooms': 1963
创建稀疏向量/广播变量
scipy depends $PYTHONPATH
def create_vector(terms, term_dict):
from scipy import sparse as sp
x = sp.csc_matrix((1, num_terms))
for t in terms:
if t in term_dict:
idx = term_dict[t]
x[0, idx] = 1
return x
all_terms_bcast = sc.broadcast(all_terms_dict)
term_vectors = title_terms.map(lambda terms: create_vector(terms, all_terms_bcast.value))
term_vectors.take(5)
[<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>]
4.4. 正则化特征
np.random.seed(42)
x = np.random.randn(10)
norm_x_2 = np.linalg.norm(x)
normalized_x = x / norm_x_2
print "x:\n%s" % x
print "2-Norm of x: %2.4f" % norm_x_2
print "Normalized x:\n%s" % normalized_x
print "2-Norm of normalized_x: %2.4f" % np.linalg.norm(normalized_x)
x:
[ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
1.57921282 0.76743473 -0.46947439 0.54256004]
2-Norm of x: 2.5908
Normalized x:
[ 0.19172213 -0.05336737 0.24999534 0.58786029 -0.09037871 -0.09037237
0.60954584 0.29621508 -0.1812081 0.20941776]
2-Norm of normalized_x: 1.0000
from pyspark.mllib.feature import Normalizer
normalizer = Normalizer()
vector = sc.parallelize([x])
normalized_x_mllib = normalizer.transform(vector).first().toArray()
print "x:\n%s" % x
print "2-Norm of x: %2.4f" % norm_x_2
print "Normalized x MLlib:\n%s" % normalized_x_mllib
print "2-Norm of normalized_x_mllib: %2.4f" % np.linalg.norm(normalized_x_mllib)
x:
[ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
1.57921282 0.76743473 -0.46947439 0.54256004]
2-Norm of x: 2.5908
Normalized x MLlib:
[ 0.19172213 -0.05336737 0.24999534 0.58786029 -0.09037871 -0.09037237
0.60954584 0.29621508 -0.1812.20941776]
2-Norm of normalized_x_mllib: 1.0000
Spark机器学习2·准备数据(pyspark)的更多相关文章
- 客户流失?来看看大厂如何基于spark+机器学习构建千万数据规模上的用户留存模型 ⛵
作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai. ...
- Spark机器学习5·回归模型(pyspark)
分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO ...
- Spark机器学习之MLlib整理分析
友情提示: 本文档根据林大贵的<Python+Spark 2.0 + Hadoop机器学习与大数据实战>整理得到,代码均为书中提供的源码(python 2.X版本). 本文的可以利用pan ...
- Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distrib ...
- Spark机器学习 Day2 快速理解机器学习
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这 ...
- Spark机器学习 Day1 机器学习概述
Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源 ...
- Spark机器学习笔记一
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spa ...
- Spark机器学习之协同过滤算法
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...
- Spark机器学习解析下集
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l 构造条件概率:回归分 ...
随机推荐
- html table 上移下移
js操作表格操方法,增加,修改,删除,一行记录 随机选择行 添加一行 删除选定行 上移选定行 下移选定行 按第一列排序 按数据和排序 <!DOCTYPE html PUBLIC " ...
- oauth 2
OAuth2是基于HTTP的认证API,一般与OAuth2搭配的API也是基于HTTP的REST风格API(比如新浪微博和github),很多人一定想过是否可以直接从浏览器端调用REST API. 我 ...
- boost实用工具:assign库了解学习
许多时候,我们需要为容器初始化或者赋值,填入大量的数据; STL容器仅提供了容纳这些数据的方法,但是填充的步骤是相当地麻烦(insert.push_back); 于是,boost::assign出现了 ...
- Django model 改成中文标题
class Tag(models.Model): title = models.CharField(max_length=30) def __str__(self): return self.titl ...
- NYOJ 821 简单求值【简单题】
/* 解题人:lingnichong 解题时间:2014.10.18 00:46 解题体会:简单题 */ 简单求值 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描写叙述 ...
- Android开发:《Gradle Recipes for Android》阅读笔记(翻译)5.1——单元测试
问题: 你想要测试app中的非android部分. 解决方案: 可以使用Android Studio1.1里面增加的单元测支持和Android的Gradle插件. 讨论: ADT插件只支持集成测试,并 ...
- Manacher模板,kmp,扩展kmp,最小表示法模板
*N]; //储存临时串 *N];//中间记录 int Manacher(char tmp[]) { int len=strlen(tmp); ; ;i<len;i++) { s[cnt++]= ...
- ef AddDays报错
ef func写法,在语句中不能使用adddays方法 )); 这样写就是不行 可以改为: ); 下面是我的一个案例,虽然到了最后都没有实现功能! public List<ContractBud ...
- zookeeper Java API 简单操作示例
本文主要介绍如何在java IDE中如何应用使用客户端与zookeeper服务器通信. 首先搭建maven环境,并在pom文件中加入zookeeper引用包: <!-- https://mvnr ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...