题意:

定义f(i)=∑ k∣i k^d(i≤n),给出q个询问,每个询问询问区间[l,r]的f(i)的和。

n<=1e7 d<=1e18 q<=5e4

可以发现f(i)是个积性函数,那么我们就可以欧拉筛 O(n) 预处理出f(i),然后做个前缀和就行了。

f(i)分为三种情况:

1.i为素数 f(i)=i^d

2.i%p[j]!=0 f(i*pj)=f(i)*f(p[j])

3.i%p[j]==0 这个比较复杂,以下是f老板说的:我们要考虑的是i*p[j]比i多的约数是什么,假设i*p[j]是p[j]的k次,那多出来的约数都是p[j]^k再乘个数,否则已经被i包含了,那只要考虑这些数的贡献就行,也就是f(i*p[j]/p[j]^k)*(p[j]^k)^d

//by zykykyk
#include<cstdio>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
#define rg register
#define il inline
#define vd void
#define ll long long
#define mod 1000000007
#define maxn 10000010
#define For(i,x,y) for (rg int i=(x);i<=(y);i++)
#define Dow(i,x,y) for (rg int i=(x);i>=(y);i--)
#define cross(i,k) for (rg int i=first[k];i;i=last[i])
using namespace std;
il ll max(ll x,ll y){return x>y?x:y;}
il ll min(ll x,ll y){return x<y?x:y;}
il ll read(){
ll x=;int ch=getchar(),f=;
while (!isdigit(ch)&&(ch!='-')&&(ch!=EOF)) ch=getchar();
if (ch=='-'){f=-;ch=getchar();}
while (isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
int n,tot,q,x,P[maxn],minp[maxn],minpd[maxn],sum[maxn];
bool vis[maxn];
ll d;
il int power(int x,ll y){
int ans=;
for (;y;y>>=,x=1ll*x*x%mod) if (y&) ans=1ll*ans*x%mod;
return ans;
}
il vd init(){
n=read(),d=read(),q=read();
sum[]=;
For(i,,n){
if (!vis[i]) P[++tot]=minp[i]=i,minpd[i]=sum[i]=power(i,d),sum[i]=(sum[i]+)%mod;
for (int j=;i*P[j]<=n&&j<=tot;j++){
int k=i*P[j];
vis[k]=;
if (i%P[j]==){
minp[k]=minp[i]*P[j];
minpd[k]=1ll*minpd[i]*minpd[P[j]]%mod;
sum[k]=(sum[i]+1ll*minpd[k]*sum[k/minp[k]]%mod)%mod;
break;
}
else {
minp[k]=P[j];
minpd[k]=minpd[P[j]];
sum[k]=1ll*sum[i]*sum[P[j]]%mod;
}
}
}
For(i,,n) (sum[i]+=sum[i-])%=mod;
} int l,r;
il vd work(){
while (q--){
l=read(),r=read();
printf("%d\n",((sum[r]-sum[l-])%mod+mod)%mod);
}
} int main(){
init(),work();
}

Luogu P3362 Cool loves shaxian 生成函数的更多相关文章

  1. 【luogu P2397 yyy loves Maths VI (mode) 】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2397 卡空间. 对于众数出现次数 > n/2 我们考虑rand. 每次正确的概率为1/2,五个测试点, ...

  2. Luogu P5351 Ruri Loves Maschera

    先ORZ\(Owen\)一发.感觉是个很套路的题,这里给一个蒟蒻的需要特判数据的伪\(n\log^2 n\)算法,真正的两只\(\log\)的还是去看标算吧(但这个好想好写跑不满啊) 首先这种树上路径 ...

  3. Luogu P2397 yyy loves Maths VI (mode)

    题目传送门 虽然只是一道黄题,但还是学到了一点新知识-- 摩尔投票法 用\(O(1)\)的内存,\(O(n)\)的时间来找出一串长度为n的数中的众数,前提是众数出现的次数要大于\(n/2\) 方法很简 ...

  4. Luogu P3602 Koishi Loves Segments

    传送门 题解 既然是选取区间,没说顺序 肯定先排遍序 都是套路 那么按什么排序呢??? 为了方便处理 我们把区间按左端点从小到大排序 把关键点也按从小到大排序 假设当扫到 \(i\) 点时,i 点之前 ...

  5. 『题解』Codeforces121A Lucky Sum

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Petya loves lucky numbers. Everybody k ...

  6. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  7. 【LG 4831】Scarlet loves WenHuaKe(生成函数)

    题目链接 一道好题,第一次用生成函数做题.感谢赛珂狼教我这个做法. 首先我们显然可以把题目中的限制转化成一个二分图的模型:左边有$n$个点,右边有$m$个点,如果在棋盘$(i,j)$这个点上放了炮,那 ...

  8. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  9. Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)

    题意: 题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对-- 首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{ ...

随机推荐

  1. JS语句循环(100以内奇偶数、100以内与7先关的数、100以内整数的和、10以内阶乘、乘法口诀、篮球弹起高度、64格子放东西)

    3.循环 循环是操作某一个功能(执行某段代码). ①循环四要素: a 循环初始值 b 循环的条件 c 循环状态 d 循环体 ②for循环 a 穷举:把所有的可能性的都一一列出来. b 迭代:每次循环都 ...

  2. SSM三大框架整合详细总结(Spring+SpringMVC+MyBatis)(山东数漫江湖)

    使用 SSM ( Spring . SpringMVC 和 Mybatis )已经很久了,项目在技术上已经没有什么难点了,基于现有的技术就可以实现想要的功能,当然肯定有很多可以改进的地方.之前没有记录 ...

  3. Python 编码问题:出现中文乱码-- (转)

    问题描述: 在写Python代码的过程中,有用到需要输出中文的地方(python2.6.5在中文注释的地方就会出错),但是运行后会出错 我的错误显示: SyntaxError: Non-ASCII c ...

  4. hydra 密码破解工具详解

    一.简介 hydra是著名黑客组织thc的一款开源的暴力密码破解工具,可以在线破解多种密码.官 网:http://www.thc.org/thc-hydra,可支持AFP, Cisco AAA, Ci ...

  5. 二叉查找树、平衡二叉树、红黑树、B-/B+树性能对比

    转载:https://blog.csdn.net/z702143700/article/details/49079107 前言:BST.AVL.RBT.B-tree都是动态结构,查找时间基本都在O(l ...

  6. xxx_initcall相关知识

    参考文件include/linux/init.h /* * Early initcalls run before initializing SMP. * * Only for built-in cod ...

  7. Linux内核基础--事件通知链(notifier chain)good【转】

    转自:http://www.cnblogs.com/pengdonglin137/p/4075148.html 阅读目录(Content) 1.1. 概述 1.2.数据结构 1.3.  运行机理 1. ...

  8. memcached和redis区别

    Memcached:是高性能分布式内存缓存服务器,本质是一个内存 key-value 数据库,但不支持数据持久化,服务器关闭后,数据全丢失.只支持 key-value 结构. Redis:将大部分数据 ...

  9. C#面向对象(OOP)入门—第二天—多态和继承(继承)

    介绍: 第一天的内容主要是不同情形下的方法重载.这一部分则主要讲面向对象中继承的概念.首先用一个要点图形来定义继承. 继承 一个简单的例子: ClassA: class ClassA:ClassB { ...

  10. leetcode 之Linked List Cycle(24)

    两个思路,一是用哈希表记录每个结点是还被访问过:二是定义两个快.慢指针,如果存在环的话,两个指针必定会在某位结点相遇. bool linkListNode(ListNode *head) { List ...