Lingo解决优化问题

@

前言

前面,我们已经对Lingo有了一定的了解,但是要想真正的熟悉Lingo在解决优化问题中的强大之处,还需要不断加强相关训练,本文主要是使用Lingo来解决优化问题,该文的主要目的有以下三点:

  • 希望能够提升自己对Lingo的相关操作并加强对优化问题的思维模式
  • 方便日后对Lingo核心操作的回顾
  • 希望每一位到来的朋友能够有所收获

若您对Lingo的安装及基本操作不是很了解,可暂且移步:Lingo安装Lingo基本操作

一、优化模型介绍

优化模型主要有三个基本要素:决策变量、目标函数、约束条件。其一般形式如下:

$$

opt \ \ \ \ f(x) \

s.t \ \ \ \ h_i(x)=0,\ i=1,2,\cdots,m \

g_j(x)\leq0,\ j=1,2,\cdots,l

$$

$opt$ 是“optimize”的缩写,表示“最优化”,一般为 $min$ 或 $max$,$f(x)$ 表示目标函数,$s.t.$ 是“subject to”的缩写“受约束于”,$h_i(x), g_i(x)$ 则表示约束条件,其中 $x$ 表示优化模型的决策变量。

二、运输问题

2.1 问题描述

Question:有三个生产地和四个销售地,其生产量、销售量及单位运费如表所示,求总运费最少的运输方案以及总运费。

2.2 问题分析

由题意,我们不难看出优化模型的决策变量是每个生产地向各个销售地运输的货量,即 $s_{ij}$。运输的总费用由各个产地向各个销售地运输所需费用之和,一个产地可以向多个销售地运输货物,一个销售地亦可接受多个产地的货物,所以可知优化模型中的目标函数是运输的总费用,即 $W=\sum3_{i=1}\sum4_{j=1}s_{ij}x_{ij}$。除此之外,该目标函数受到两个限制,即优化模型的约束条件:

  • 生产地限制:每个生产地的运输量理应小于产生量,$\sum_{j=1}^4s_{ij}\leq a_i$
  • 销售地限制:每个销售地接受的货物理应等于销售量,$\sum_{i=1}^3x_{ij}=b_j$

2.2 优化模型构建

有以上问题分析,为求出总运费最小的方案,我们可以构建该问题的优化模型如下:

$$

min \ \ \ \ \sum3_{i=1}\sum4_{j=1}s_{ij}x_{ij} \

s.t. \ \ \ \ \sum_{j=1}^4s_{ij}\leq a_i ;;\ \sum_{i=1}^3x_{ij}=b_j \ ;\ s_{ij}\geq0 \ ;

$$

2.3 模型求解

求解的Lingo代码如下:

sets:
supply/1..3/: s; !定义运输集,集中的每个元素都有对应的属性,即运输量s;
demand/1..4/: d; !定义需求集,集中的每个元素都有对应的属性,即需求量d;
link(supply, demand): p, x; !定义link衍生集,每个元素中都有两个属性,运费p,运输量x;
endsets data:
s = 30 25 21; !定义数据集s,表示生产量;
d = 15 17 22 12; !定义数据集d,表示销售量;
p = 6 2 6 7 !定义数据集p,表示生产地向销售地所对应的运费;
4 9 5 3
8 8 1 5;
enddata min = @sum(link(i,j): p(i,j)*x(i,j)); !目标函数;
@for(supply(i): @sum(demand(j): x(i,j)) <= s(i)); !生产地限制约束条件;
@for(demand(j): @sum(supply(i): x(i,j)) = d(j)); !销售地限制约束条件;

2.4 求解结果

运行如上所示Lingo程序,我们可以得到如下结果:

通过上图展示,我们可以得到运输的最佳方案以及最小运费161个单位。运输方案图示如下:

三、待更新

Lingo解决最优化问题的更多相关文章

  1. 使用Lingo增强JMS

    虽然activemq+jencks的jms轻量级解决方案已经很好地在psa中work了,尤其spring的JmsTemplate使得代码更简单,但是还是存在问题. 问题来自暑期做psa的时候,link ...

  2. DeepLearning之路(三)MLP

    DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/articl ...

  3. sicp第1章

    牛顿迭代法求平方: (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) ...

  4. convex optimization

    ##凸优化总结所有这些想法基本是来自于书籍[convex optimization](http://book.douban.com/subject/1888111/),主要包括凸优化的基本理论,主要的 ...

  5. 【机器学习实战】第6章 支持向量机(Support Vector Machine / SVM)

    第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/lates ...

  6. 机器学习之支持向量机(三):核函数和KKT条件的理解

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  7. 从线性模型(linear model)衍生出的机器学习分类器(classifier)

    1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大 ...

  8. AI从业者需要应用的10种深度学习方法

    https://zhuanlan.zhihu.com/p/43636528 https://zhuanlan.zhihu.com/p/43734896 摘要:想要了解人工智能,不知道这十种深度学习方法 ...

  9. 支持向量机-完整Platt-SMO算法加速优化

    完整版SMO算法与简单的SMO算法: 实现alpha的更改和代数运算的优化环节一模一样,唯一的不同就是选择alpha的方式.完整版应用了一些能够提速的方法. 同样使用Jupyter实现,后面不在赘述 ...

随机推荐

  1. 设计模式:桥接(Bridge)模式

    设计模式:桥接(Bridge)模式 一.前言   写到这里,基本上就是对前面几种模式的扩展和区别了,可以看到我们前面的几种模式,很多时候都出现了重叠,这里要分清一个概念,模式并不是完全隔离和独立的,有 ...

  2. C#学习——入门简介

    # C#简介 #原版出处点击这里 C#是一个现代的.通用的.面向对象的编程语言,它是由微软(Microsoft)开发的,由Ecma和ISO核准认可的. C#是由Anders Heilsberg和他的团 ...

  3. 在一个Excel单元格内输入多行内容

    有时候,我们想在一个Excel单元格中输入多行内容,可以根据不同情况选择下面的方法来实现: 方法一:如果有大量的单元格需要这样做,采取此种设置格式的方法,选中需要这种格式的单元格,执行“格式→单元格” ...

  4. ListView实现下拉刷新(一)建立头布局

    一.效果演示 ListView实现下拉刷新,是很常见的功能.下面是一个模拟的效果,如下图:                                   效果说明:当往下拉ListView的时候 ...

  5. 折腾apt源的时候发生的错误

    在折腾Ubuntu源的时候,把新的源替换进去,然后 sudo apt-get update 之后报错: W: Unknown Multi-Arch type 'no' for package 'com ...

  6. cin,get,getline

    一.cin 1.cin使用空白(空格.制表符和换行符)来确定字符串结束的位置,并且对于换行符,cin会把换行符留在输入队列.cin读取字符串放到数组中,并自动在结尾添加空字符. 例如: ]; cin& ...

  7. jQuery中$.ajax()详解(转)

    JQuery中$.ajax()方法参数详解     url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. type: 要求为String类型的参数,请求方式(post或get) ...

  8. appium入门知识

    UI自动化相关工具 1.appium平台 2.Apple的UIAutomation 3.Google的UIAutomation 简单的介绍一下这几个工具: 1.Appium简介 Appium使用Web ...

  9. php编程零基础如何快速入门。门头沟编程

    昨天遇到一个人,说知道thinktphp,不过几年前的事了. 我先跟他讲了下,xyhcms后台功能,各个版块,以及数据库都介绍了一下. 跟他说了一个功能现场实现,说了实现方法. 然后上机操作,发现他表 ...

  10. 使用C#的AssemblyResolve事件和TypeResolve事件动态解析加载失败的程序集

    我们知道反射是 依赖注入 模式的基础,依赖注入要求只在项目中引用定义接口的程序集,而不引用接口实现类的程序集,因为接口实现类的程序集应该是通过反射来动态加载的,这样才能保证接口与其实现类之间的松耦合. ...