BZOJ2733:使用并查集维护连通性之后用线段树维护+线段树合并(动态开点)
可以说是线段树合并的裸题吧
题意就是给你两个操作
一个操作是合并两个集合,这两个集合都是用权值线段树维护的,便于查询第k小元素
另一个操作就是查询区间极值了
#include<cstdio>
const int maxn=;
int n,m,sz;
int v[maxn],id[maxn],fa[maxn],root[maxn];
int lch[],rch[],sum[];
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int find(int x)
{
return x==fa[x]?x:fa[x]=find(fa[x]);
}
void insert(int &k,int l,int r,int val)
{
if(k==) k=++sz;
if(l==r)
{
sum[k]=;return;
}
int mid=(l+r)>>;
if(val<=mid) insert(lch[k],l,mid,val);
else insert(rch[k],mid+,r,val);
sum[k]=sum[lch[k]]+sum[rch[k]];
}
int query(int k,int l,int r,int rank)
{
if(l==r) return l;
int mid=(l+r)>>;
if(sum[lch[k]]>=rank) return query(lch[k],l,mid,rank);
else return query(rch[k],mid+,r,rank-sum[lch[k]]);
}
int merge(int x,int y)
{
if(x==) return y;
if(y==) return x;
lch[x]=merge(lch[x],lch[y]);
rch[x]=merge(rch[x],rch[y]);
sum[x]=sum[lch[x]]+sum[rch[x]];
return x;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++) v[i]=read();
for(int i=;i<=n;i++) fa[i]=i;
int x,y;
for(int i=;i<=m;i++)
{
x=read(),y=read();
int p=find(x),q=find(y);
fa[p]=q;
}
for(int i=;i<=n;i++)
{
insert(root[find(i)],,n,v[i]); //往对应的线段树插点
id[v[i]]=i;
}
int k=read();
char ch[];
while(k--)
{
scanf("%s",ch);
x=read();y=read();
if(ch[]=='Q')
{
int p=find(x);
if(sum[root[p]]<y)
{
puts("-1");continue;//查询越界
}
int t=query(root[p],,n,y); //得到location
printf("%d\n",id[t]);
}
else
{
int p=find(x),q=find(y);
if(p!=q)
{
fa[p]=q;
root[q]=merge(root[p],root[q]);
}
}
}
return ;
}
权值线段树的理解更加深刻了
权值线段树的下标是数字本身,而存的是这个数出现的次数,也就是权值
一般权值线段树都是和动态开点捆绑在一起的
所谓动态开点,就是每个节点用的时候再开,可以去掉许多无用的节点
和主席树的区别,目前阶段的理解就是,主席树需要离散化,动态开点线段树不需要?
建n棵线段树,每一棵线段树维护[1,i]的数字出现情况
也就是当前数字范围内的数出现了多少次
然后前缀和查找就好了
可以这么说,动态开点的权值线段树的儿子之间没有耦合,可持久化权值线段树的儿子之间是耦合在一起的
虽然功能一样的,但是T和M会有差异
BZOJ2733:使用并查集维护连通性之后用线段树维护+线段树合并(动态开点)的更多相关文章
- CF731C Socks并查集(森林),连边,贪心,森林遍历方式,动态开点释放内存
http://codeforces.com/problemset/problem/731/C 这个题的题意是..小明的妈妈给小明留下了n只袜子,给你一个大小为n的颜色序列c 代表第i只袜子的颜色,小明 ...
- bzoj2733 离线+并查集+主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=2733 网上清一色的合并线段树题解,我又不会,只能自己胡来,没想到Rush过去了 永无乡包含 n 座 ...
- YYHS-猜数字(并查集/线段树维护)
题目描述 LYK在玩猜数字游戏. 总共有n个互不相同的正整数,LYK每次猜一段区间的最小值.形如[li,ri]这段区间的数字的最小值一定等于xi. 我们总能构造出一种方案使得LY ...
- 【并查集】 不相交集合 - 并查集 教程(文章作者:Slyar)
最近写了一个多星期的并查集,一瞬间贴出这么多解题报告,我想关于并查集的应用先告一段落吧,先总结一下. 在网上看到一篇关于并查集比较好的教程(姑且允许我这么说吧),不转过来是在可惜.献给爱学习的你 文章 ...
- NOI2001 食物链【扩展域并查集】*
NOI2001 食物链 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的 ...
- BZOJ 4736 温暖会指引我们前行 LCT+最优生成树+并查集
题目链接:http://uoj.ac/problem/274 题意概述: 没什么好概述的......概述了题意就知道怎么做了......我懒嘛 分析: 就是用lct维护最大生成树. 然后如果去UOJ上 ...
- 浅谈并查集 By cellur925【内含题目食物链、银河英雄传说等】
什么是并查集? 合并!查询!集合! 专业点说? 动态维护若干不重叠的和,支持合并查询的数据结构!(lyd老师说的) 数据结构特点:代表元.即为每个集合选择一个固定的元素,作为整个集合的代表,利用树形结 ...
- ZR并查集专题
ZR并查集专题 并查集,作为一个基础算法,对于初学者来说,下面的代码是维护连通性的利器 return fa[x] == x ? x : fa[x] = getf(fa[x]); 所以,但是这对并查集的 ...
- 浅谈并查集&种类并查集&带权并查集
并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...
- CF109 C. Lucky Tree 并查集
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...
随机推荐
- [leetcode-775-Global and Local Inversions]
We have some permutation A of [0, 1, ..., N - 1], where N is the length of A. The number of (global) ...
- windows编程常见数据类型
windows编程常见数据类型, 总结一下方便查阅: 类型 对应指针 描述 ATOM . typedef WORD ATOM; BOOL LPBOOL 布尔类型,值要写成TRUE或FALSE,实际上是 ...
- 项目uml
[团队信息] 团队项目: 小葵日记--主打记录与分享模式的日记app 队名:日不落战队 队员信息及贡献分比例: 短学号 名 本次作业博客链接 此次作业任务 贡献分配 备注 501 安琪 http:// ...
- lintcode-39-恢复旋转排序数组
39-恢复旋转排序数组 给定一个旋转排序数组,在原地恢复其排序. 说明 什么是旋转数组? 比如,原始数组为[1,2,3,4], 则其旋转数组可以是[1,2,3,4], [2,3,4,1], [3,4, ...
- Thinkphp5使用validate实现验证功能
作为前端er,对于验证这块有着切身的体会,虽然逐渐得心应手,但始终没有一个内置的功能拿来就能用.tp5恰好提供一个.本文简单介绍并实现以下.主要是实现一下. 验证的实现基于tp5内置的对象valida ...
- jdbc关闭连接顺序
jdbc连接数据库时,先获取connection,再通过statement进行操作,将结果集放在resultset中,不过在关闭数据库的时候要小心,要跟前面的操作反着来,不然就会出现异常.如果直接关闭 ...
- Delphi Dataset CurValue
TField.CurValue Property Represents the current value of the field component including changes made ...
- VS2012完全卸载
1.先交VS2012的ISO通过Ultraiso载入2.DOS命中输入 I:\vs_ultimate.exe /uninstall /force 或 I:vs_ultimate.exe /uninst ...
- Activiti5工作流笔记二
流程变量 import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; import org.activiti ...
- (转)java +libsvm 安装与测试:
libsvm 用SVM实现简单线性分类 (转自:http://www.cnblogs.com/freedomshe/archive/2012/10/09/2717356.html) 0. 下载lib ...