Connections between cities LCA
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
1 3 2
2 4 3
5 2 3
1 4
4 5
6
Hint
Huge input, scanf recommended.
题意是说给你一个森林,让你求两点之间的最近距离。
lca求最近公共祖先,如果不是在同一棵树上,则输出Not connected。
用并查集来判断是否在同一颗树上面
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("DATA.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 1e5 + ;
int _pow[maxn], dep[maxn], dis[maxn], vis[maxn], ver[maxn];
int tot, head[maxn], dp[maxn * ][], k, first[maxn], fa[maxn];
struct node {
int u, v, w, nxt;
} edge[maxn << ];
void init() {
tot = ;
mem(head, -);
for (int i = ; i < maxn ; i++) fa[i] = i;
}
int Find(int x) {
return x == fa[x] ? fa[x] : fa[x] = Find(fa[x]);
}
void combine(int x, int y) {
int nx = Find(x), ny = Find(y);
if(nx != ny) fa[nx] = ny;
return ;
}
void add(int u, int v, int w) {
edge[tot].v = v, edge[tot].u = u;
edge[tot].w = w, edge[tot].nxt = head[u];
head[u] = tot++;
}
void dfs(int u, int DEP) {
vis[u] = ;
ver[++k] = u;
first[u] = k;
dep[k] = DEP;
for (int i = head[u]; ~i; i = edge[i].nxt) {
if (vis[edge[i].v]) continue;
int v = edge[i].v, w = edge[i].w;
dis[v] = dis[u] + w;
dfs(v, DEP + );
ver[++k] = u;
dep[k] = DEP;
}
}
void ST(int len) {
int K = (int)(log((double)len) / log(2.0));
for (int i = ; i <= len ; i++) dp[i][] = i;
for (int j = ; j <= K ; j++) {
for (int i = ; i + _pow[j] - <= len ; i++) {
int a = dp[i][j - ], b = dp[i + _pow[j - ]][j - ];
if (dep[a] < dep[b]) dp[i][j] = a;
else dp[i][j] = b;
}
}
}
int RMQ(int x, int y) {
int K = (int)(log((double)(y - x + )) / log(2.0));
int a = dp[x][K], b = dp[y - _pow[K] + ][K];
if (dep[a] < dep[b]) return a;
else return b;
}
int LCA(int u, int v) {
int x = first[u], y = first[v];
if (x > y) swap(x, y);
int ret = RMQ(x, y);
return ver[ret];
}
int main() {
for (int i = ; i < ; i++) _pow[i] = ( << i);
int n, m, q;
while(~sfff(n, m, q)) {
init();
mem(vis, );
for (int i = ; i < m ; i++) {
int u, v, w;
sfff(u, v, w);
add(u, v, w);
add(v, u, w);
combine(u, v);
}
k = ;
for (int i = ; i <= n ; i++) {
if (fa[i] == i) {
dis[i] = ;
dfs(i, );
}
}
ST( * n - );
while(q--) {
int u, v;
sff(u, v);
int lca = LCA(u, v);
if (Find(u) == Find(v)) printf("%d\n", dis[u] + dis[v] - * dis[lca]);
else printf("Not connected\n");
}
}
return ;
}
Connections between cities LCA的更多相关文章
- hdu 2874 Connections between cities [LCA] (lca->rmq)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- HDU 2874 Connections between cities(LCA Tarjan)
Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...
- hdu-2874 Connections between cities(lca+tarjan+并查集)
题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/327 ...
- HDU 2874 Connections between cities (LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意是给你n个点,m条边(无向),q个询问.接下来m行,每行两个点一个边权,而且这个图不能有环路 ...
- [hdu2874]Connections between cities(LCA+并查集)
题意:n棵树,求任意两点的最短距离. 解题关键:并查集判断两点是否位于一棵树上,然后求最短距离即可.此题可以直接对全部区间直接进行st表,因为first数组会将连接的两点的区间表示出来. //#pra ...
- hdu2876 Connections between cities(LCA倍增)
图不一定联通,所以用并查集找各个联通块的祖先分别建图,之后就和LCA的步骤差不多了 #include<iostream> #include<cstring> #include& ...
- HDU 2874 Connections between cities(LCA)
题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...
- hdu 2874 Connections between cities 带权lca判是否联通
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu 2874 Connections between cities(st&rmq LCA)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
随机推荐
- TW实习日记:第16天
前端的样式bug实在是太太太莫名其妙了,尤其是封装好的组件,一层套一层的,根本不知道是哪一层出了问题...除了改bug就是做新功能,真想吐槽一下这个项目的留言板,根本没人会用吧...这功能实在是太老旧 ...
- 209. First Unique Character in a String
Description Find the first unique character in a given string. You can assume that there is at least ...
- PAT-甲级解题目录
PAT甲级题目:点这里 pat解题列表 题号 标题 题目类型 10001 1001 A+B Format (20 分) 字符串处理 1003 1003 Emergency (25 分) 最短路径 ...
- StreamSets小白踩过的一些坑
由于公司业务上的需求,需要实时监控mysql数据库的数据的增长,并将数据同步到另一个平台,所以就问老大使用什么工具比较好,老大推荐使用StreamSets,还说在测试环境都已经部署好了StreamSe ...
- 普通Java类获取Spring的Bean的方法
普通Java类获取Spring的Bean的方法 在SSH集成的前提下.某些情况我们需要在Action以外的类中来获得Spring所管理的Service对象. 之前我在网上找了好几好久都没有找到合适的方 ...
- CDH组件目录\主机资源分配\端口
目录: /var/log/cloudera-scm-installer : 安装日志目录. /var/log/* : 相关日志文件(相关服务的及CM的). /usr/share/cmf/ : 程序安装 ...
- [C++] OOP - Virtual Functions and Abstract Base Classes
Ordinarily, if we do not use a function, we do not need to supply a definition of the function. Howe ...
- Internet History
Alan Turing and Bletchley Park Top secret breaking effort(二战破译希特勒密码) 10,000 people at the peak(team ...
- object-oriented 第二次作业(2)
面向对象程序设计自学计划 由于我的英文实在是很差,所以我就没有去考虑看英文的课程视频.网络上的课程有很多,什么学校的也有,一开始我不知道该如何开始选择课程.感觉每个都还可以.后来在群里的看到别人推荐的 ...
- Javascript动态方法调用与参数修改的问题
Javascript中可以对所传参数在函数内进行修改,如下 ? 1 2 3 4 5 function func1(name) { name = 'lily'; alert(name); ...