RabbitMQ 常见问题
1、什么是RabbitMQ?
2、MQ的优点
- 异步处理 - 相比于传统的串行、并行方式,提高了系统吞吐量。
- 应用解耦 - 系统间通过消息通信,不用关心其他系统的处理。
- 流量削锋 - 可以通过消息队列长度控制请求量;可以缓解短时间内的高并发请求。
- 日志处理 - 解决大量日志传输。
- 消息通讯 - 消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。
3、消息队列有什么缺点
4、你们公司生产环境用的是什么消息中间件?
- 比如用的是RabbitMQ,然后可以初步给一些你对不同MQ中间件技术的选型分析。
- 举个例子:比如说ActiveMQ是老牌的消息中间件,国内很多公司过去运用的还是非常广泛的,功能很强大。但是问题在于没法确认ActiveMQ可以支撑互联网公司的高并发、高负载以及高吞吐的复杂场景,在国内互联网公司落地较少。而且使用较多的是一些传统企业,用ActiveMQ做异步调用和系统解耦。
- 然后可以说说RabbitMQ,他的好处在于可以支撑高并发、高吞吐、性能很高,同时有非常完善便捷的后台管理界面可以使用。另外,他还支持集群化、高可用部署架构、消息高可靠支持,功能较为完善。而且经过调研,国内各大互联网公司落地大规模RabbitMQ集群支撑自身业务的case较多,国内各种中小型互联网公司使用RabbitMQ的实践也比较多。除此之外,RabbitMQ的开源社区很活跃,较高频率的迭代版本,来修复发现的bug以及进行各种优化,因此综合考虑过后,公司采取了RabbitMQ。但是RabbitMQ也有一点缺陷,就是他自身是基于erlang语言开发的,所以导致较为难以分析里面的源码,也较难进行深层次的源码定制和改造,毕竟需要较为扎实的erlang语言功底才可以。
- 然后可以聊聊RocketMQ,是阿里开源的,经过阿里的生产环境的超高并发、高吞吐的考验,性能卓越,同时还支持分布式事务等特殊场景。而且RocketMQ是基于Java语言开发的,适合深入阅读源码,有需要可以站在源码层面解决线上生产问题,包括源码的二次开发和改造。
- 另外就是Kafka,Kafka提供的消息中间件的功能明显较少一些,相对上述几款MQ中间件要少很多。但是Kafka的优势在于专为超高吞吐量的实时日志采集、实时数据同步、实时数据计算等场景来设计。因此Kafka在大数据领域中配合实时计算技术(比如Spark Streaming、Storm、Flink)使用的较多。但是在传统的MQ中间件使用场景中较少采用。
5、MQ 有哪些常见问题?如何解决这些问题?
- 消息的顺序问题
- 消息的重复问题
消息的顺序问题
- 并行度就会成为消息系统的瓶颈(吞吐量不够)
- 更多的异常处理,比如:只要消费端出现问题,就会导致整个处理流程阻塞,我们不得不花费更多的精力来解决阻塞的问题。
- 不关注乱序的应用实际大量存在
- 队列无序并不意味着消息无序,所以从业务层面来保证消息的顺序而不仅仅是依赖于消息系统,是一种更合理的方式。
消息的重复问题
- 造成消息重复的根本原因是:网络不可达。
- 所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?
- 消费端处理消息的业务逻辑保持幂等性。只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现。利用一张日志表来记录已经处理成功的消息的 ID,如果新到的消息 ID 已经在日志表中,那么就不再处理这条消息。
6、rabbitmq 的使用场景
7、RabbitMQ基本概念
- Broker: 简单来说就是消息队列服务器实体
- Exchange: 消息交换机,它指定消息按什么规则,路由到哪个队列
- Queue: 消息队列载体,每个消息都会被投入到一个或多个队列
- Binding: 绑定,它的作用就是把exchange和queue按照路由规则绑定起来
- Routing Key: 路由关键字,exchange根据这个关键字进行消息投递
- VHost: vhost 可以理解为虚拟 broker ,即 mini-RabbitMQ server。其内部均含有独立的queue、exchange 和 binding 等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost 中)。
- Producer: 消息生产者,就是投递消息的程序
- Consumer: 消息消费者,就是接受消息的程序
- Channel: 消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务
- 由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。
8、RabbitMQ的工作模式
simple模式(即最简单的收发模式)
work工作模式(资源的竞争)
publish/subscribe发布订阅(共享资源)
- 每个消费者监听自己的队列;
- 生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。
routing路由模式
- 消息生产者将消息发送给交换机按照路由判断,路由是字符串(info) 当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息;
- 根据业务功能定义路由字符串
- 从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。
- 业务场景:error 通知;EXCEPTION;错误通知的功能;传统意义的错误通知;客户通知;利用key路由,可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误;。
topic 主题模式(路由模式的一种)
9、如何保证RabbitMQ消息的顺序性?
- 拆分多个 queue(消息队列),每个 queue(消息队列) 一个 consumer(消费者),就是多一些 queue(消息队列)而已,确实是麻烦点;
- 或者就一个 queue (消息队列)但是对应一个 consumer(消费者),然后这个 consumer(消费者)内部用内存队列做排队,然后分发给底层不同的 worker 来处理。
10、消息如何分发?
11. 消息怎么路由?
- 消息提供方->路由->一至多个队列消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。通过队列路由键,可以把队列绑定到交换器上。消息到达交换器后,RabbitMQ 会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则);
- 常用的交换器主要分为一下三种:
- fanout:如果交换器收到消息,将会广播到所有绑定的队列上
- direct:如果路由键完全匹配,消息就被投递到相应的队列
- topic:可以使来自不同源头的消息能够到达同一个队列。 使用 topic 交换器时,可以使用通配符
12、消息基于什么传输?
12、消费时的幂等性?
- 先说为什么会重复消费:正常情况下,消费者在消费消息的时候,消费完毕后,会发送一个确认消息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除;
- 但是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将消息分发给其他的消费者。
- 针对以上问题,一个解决思路是:保证消息的唯一性,就算是多次传输,不要让消息的多次消费带来影响;保证消息等幂性;
- 比如:在写入消息队列的数据做唯一标示,消费消息时,根据唯一标识判断是否消费过;
- 假设你有个系统,消费一条消息就往数据库里插入一条数据,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下是否已经消费过了,若是就直接扔了,这样不就保留了一条数据,从而保证了数据的正确性。
13、如何确保消息正确地发送至 RabbitMQ? 如何确保消息接收方消费了消息?
发送方确认模式
- 将信道设置成 confirm 模式(发送方确认模式),则所有在信道上发布的消息都会被指派一个唯一的 ID。
- 一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信道会发送一个确认给生产者(包含消息唯一 ID)。
- 如果 RabbitMQ 发生内部错误从而导致消息丢失,会发送一条 nack(notacknowledged,未确认)消息。
- 发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消息。当确认消息到达生产者应用程序,生产者应用程序的回调方法就会被触发来处理确认消息。
接收方确认机制
- 消费者接收每一条消息后都必须进行确认(消息接收和消息确认是两个不同操作)。只有消费者确认了消息,RabbitMQ 才能安全地把消息从队列中删除。
- 这里并没有用到超时机制,RabbitMQ 仅通过 Consumer 的连接中断来确认是否需要重新发送消息。也就是说,只要连接不中断,RabbitMQ 给了 Consumer 足够长的时间来处理消息。保证数据的最终一致性;
下面罗列几种特殊情况
- 如果消费者接收到消息,在确认之前断开了连接或取消订阅,RabbitMQ 会认为消息没有被分发,然后重新分发给下一个订阅的消费者。(可能存在消息重复消费的隐患,需要去重)
- 如果消费者接收到消息却没有确认消息,连接也未断开,则 RabbitMQ 认为该消费者繁忙,将不会给该消费者分发更多的消息。
14、如何保证RabbitMQ消息的可靠传输?
- 消息不可靠的情况可能是消息丢失,劫持等原因;
- 丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息;
1. 生产者丢失消息
- 从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息;
- transaction机制就是说:发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())。
- 然而,这种方式有个缺点:吞吐量下降;
- confirm模式用的居多:一旦channel进入confirm模式,所有在该信道上发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后;rabbitMQ就会发送一个ACK给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了;
- 如果rabbitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。
2. 消息队列丢数据:消息持久化。
- 处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。
- 这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。
- 那么如何持久化呢?其实也很容易,就下面两步
- 将queue的持久化标识durable设置为true,则代表是一个持久的队列。
- 发送消息的时候将deliveryMode=2这样设置以后,即使rabbitMQ挂了,重启后也能恢复数据。
3. 消费者丢失消息
- 消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!
- 消费者在收到消息之后,处理消息之前,会自动回复RabbitMQ已收到消息;
- 如果这时处理消息失败,就会丢失该消息;解决方案:处理消息成功后,手动回复确认消息。
15、为什么不应该对所有的 message 都使用持久化机制?
- 首先,必然导致性能的下降,因为写磁盘比写 RAM 慢的多,message 的吞吐量可能有 10 倍的差距。
- 其次,message 的持久化机制用在 RabbitMQ 的内置 cluster 方案时会出现“坑爹”问题。矛盾点在于,若 message 设置了 persistent 属性,但 queue 未设置 durable 属性,那么当该 queue 的owner node 出现异常后,在未重建该 queue 前,发往该 queue 的 message 将被 blackholed;若 message 设置了 persistent 属性,同时 queue 也设置了 durable 属性,那么当 queue 的owner node 异常且无法重启的情况下,则该 queue 无法在其他 node 上重建,只能等待其owner node 重启后,才能恢复该 queue 的使用,而在这段时间内发送给该 queue 的 message将被 blackholed 。
- 所以,是否要对 message 进行持久化,需要综合考虑性能需要,以及可能遇到的问题。若想达到100,000 条/秒以上的消息吞吐量(单 RabbitMQ 服务器),则要么使用其他的方式来确保message 的可靠 delivery ,要么使用非常快速的存储系统以支持全持久化(例如使用 SSD)。另外一种处理原则是:仅对关键消息作持久化处理(根据业务重要程度),且应该保证关键消息的量不会导致性能瓶颈。
16、如何保证高可用的?RabbitMQ 的集群?
1. 单机模式
2. 普通集群模式
3. 镜像集群模式
- 这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上。就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
- 这样的好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!RabbitMQ一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。
17、如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,怎么办?
- 消息积压处理办法:临时紧急扩容。
- 先修复 consumer 的问题,确保其恢复消费速度,然后将现有 cnosumer 都停掉。新建一个 topic,partition 是原来的 10 倍,临时建立好原先 10 倍的 queue 数量。然后写一个临时的分发数据的 consumer 程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的 10 倍数量的 queue。接着临时征用 10 倍的机器来部署 consumer,每一批 consumer 消费一个临时 queue 的数据。这种做法相当于是临时将 queue 资源和 consumer 资源扩大 10 倍,以正常的 10 倍速度来消费数据。等快速消费完积压数据之后,得恢复原先部署的架构,重新用原先的 consumer 机器来消费消息。
- MQ中消息失效:假设你用的是 RabbitMQ,RabbtiMQ 是可以设置过期时间的,也就是 TTL。如果消息在 queue 中积压超过一定的时间就会被 RabbitMQ 给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在 mq 里,而是大量的数据会直接搞丢。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入 mq 里面去,把白天丢的数据给他补回来。也只能是这样了。假设 1 万个订单积压在 mq 里面,没有处理,其中 1000 个订单都丢了,你只能手动写程序把那 1000 个订单给查出来,手动发到 mq 里去再补一次。
- mq消息队列块满了:如果消息积压在 mq 里,你很长时间都没有处理掉,此时导致 mq 都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。
18、设计MQ思路
- 比如说这个消息队列系统,我们从以下几个角度来考虑一下;
- 首先这个 mq 得支持可伸缩性,就是需要的时候快速扩容,就可以增加吞吐量和容量,那怎么搞?设计个分布式的系统,参照一下 kafka 的设计理念,broker -> topic -> partition,每个partition 放一个机器,就存一部分数据。如果现在资源不够了,给 topic 增加partition,然后做数据迁移,增加机器,不就可以存放更多数据,提供更高的吞吐量了?
- 其次你得考虑一下这个 mq 的数据要不要落地磁盘吧?那肯定要了,落磁盘才能保证别进程挂了数据就丢了。那落磁盘的时候怎么落啊?顺序写,这样就没有磁盘随机读写的寻址开销,磁盘顺序读写的性能是很高的,这就是 kafka 的思路。
- 其次你考虑一下你的 mq 的可用性啊?这个事儿,具体参考之前可用性那个环节讲解的 kafka 的高可用保障机制。多副本 -> leader & follower -> broker 挂了重新选举 leader 即可对外服务。
19、RocketMq有什么功能?
20、RoctetMq的架构
NameServer
- 每个NameServer结点之间是相互独立,彼此没有任何信息交互。
- Nameserver被设计成几乎是无状态的,通过部署多个结点来标识自己是一个伪集群,Producer在发送消息前从NameServer中获取Topic的路由信息也就是发往哪个Broker,Consumer也会定时从NameServer获取topic的路由信息,Broker在启动时会向NameServer注册,并定时进行心跳连接,且定时同步维护的Topic到NameServer。
- 1、跟Broker结点保持长连接。
- 2、维护Topic的路由信息。
Broker
- Broker内部维护着一个个Message Queue,用来存储消息的索引,真正存储消息的地方是CommitLog(日志文件)。
- 单个Broker与所有的Nameserver保持着长连接和心跳,并会定时将Topic信息同步到NameServer,和NameServer的通信底层是通过Netty实现的。
Producer
- 同步:同步发送是指发送方发出数据后等待接收方发回响应后在发送下一个数据包。一般用于重要的消息通知,如重要的通知邮件或者营销短信等。
- 异步:异步发送是指发送方发出数据后不等接收方发回响应就发出下一个数据包。一般用于可能链路耗时较长而对响应时间比较敏感的场景。如视频上传后通知启动转码服务。
- 单向:单向发送是指只负责发送消息而不等待接收方发送响应且没有回调函数,适合那些耗时比较短且对可靠性要求不高的场景,例如日志收集。
Consumer
- PULL:拉取型消费者主动从broker中拉取消息消费,只要拉取到消息,就会启动消费过程,称为主动型消费。
- PUSH:推送型消费者就是要注册消息的监听器,监听器是要用户自行实现的。当消息达到broker服务器后,会触发监听器拉取消息,然后启动消费过程。但是从实际上看还是从broker中拉取消息,称为被动消费型。
- 集群消费:broker中的一条消息会发送给订阅这个topic的一个消费组里的唯一一个消费者进行消费。如果这个消费者挂掉了,组里的其他消费者会接替它进行消费。
- 广播消费:broker中的一条消息会发送给订阅这个topic的一个消费组里的每一个消费者进行消费。
- Consumer的负载均衡是指将MessageQueue中的消息队列分配到消费者组里的具体消费者。
- Consumer在启动的时候会实例化rebalanceImpl,这个类负责消费端的负载均衡。通过rebalanceImpl调用allocateMesasgeQueueStratage.allocate()完成负载均衡。
- 每次有新的消费者加入到组中就会重新做一下分配。每10秒自动做一次负载均衡。
21、RocketMq消息模型
Message
Topic
Tag
Group
Message Queue
offset
22、如何保证顺序消息?
- 顺序由producer发送到broker的消息队列是满足FIFO的,所以发送是顺序的,单个queue里的消息是顺序的。多个Queue同时消费是无法绝对保证消息的有序性的。所以,同一个topic,同一个queue,发消息的时候一个线程发送消息,消费的时候一个线程去消费一个queue里的消息。
- 追问:怎么保证消息发到同一个queue里?RocketMQ给我们提供了MessageQueueSelector接口,可以重写里面的接口,实现自己的算法,比如判断i%2==0,那就发送消息到queue1否则发送到queue2。
23、如何实现消息过滤?
- 有两种方案,一种是在broker端按照Consumer的去重逻辑进行过滤,这样做的好处是避免了无用的消息传输到Consumer端,缺点是加重了Broker的负担,实现起来相对复杂。
- 另一种是在Consumer端过滤,比如按照消息设置的tag去重,这样的好处是实现起来简单,缺点是有大量无用的消息到达了Consumer端只能丢弃不处理。
24、如何实现消息去重?
- 如果由于网络等原因,多条重复消息投递到了Consumer端,你怎么进行消息去重?
- 这个得先说下消息的幂等性原则:就是用户对于同一种操作发起的多次请求的结果是一样的,不会因为操作了多次就产生不一样的结果。只要保持幂等性,不管来多少条消息,最后处理结果都一样,需要Consumer端自行实现。
- 去重的方案:因为每个消息都有一个MessageId, 保证每个消息都有一个唯一键,可以是数据库的主键或者唯一约束,也可以是Redis缓存中的键,当消费一条消息前,先检查数据库或缓存中是否存在这个唯一键,如果存在就不再处理这条消息,如果消费成功,要保证这个唯一键插入到去重表中。
25、分布式事务消息?
- 你知道半消息吗?RocketMQ是怎么实现分布式事务消息的?
- 半消息:是指暂时还不能被Consumer消费的消息,Producer成功发送到broker端的消息,但是此消息被标记为“暂不可投递”状态,只有等Producer端执行完本地事务后经过二次确认了之后,Consumer才能消费此条消息。
26、消息的可用性?
- 1、可以采用同步发送,即发送一条数据等到接受者返回响应之后再发送下一个数据包。如果返回响应OK,表示消息成功发送到了broker,状态超时或者失败都会触发二次重试。
- 2、可以采用分布式事务消息的投递方式。
- 3、如果一条消息发送之后超时,也可以通过查询日志的API,来检查是否在Broker存储成功。总的来说,Producer还是采用同步发送来保证的。
- 1、消息只要持久化到CommitLog(日志文件)中,即使Broker宕机,未消费的消息也能重新恢复再消费。
- 2、Broker的刷盘机制:同步刷盘和异步刷盘,不管哪种刷盘都可以保证消息一定存储在pagecache中(内存中),但是同步刷盘更可靠,它是Producer发送消息后等数据持久化到磁盘之后再返回响应给Producer。
- 3、Broker支持多Master多Slave同步双写和多Master多Slave异步复制模式,消息都是发送给Master主机,但是消费既可以从Master消费,也可以从Slave消费。同步双写模式可以保证即使Master宕机,消息肯定在Slave中有备份,保证了消息不会丢失。
25、刷盘实现
- 同步刷盘:在消息达到Broker的内存之后,必须刷到commitLog日志文件中才算成功,然后返回Producer数据已经发送成功。
- 异步刷盘:异步刷盘是指消息达到Broker内存后就返回Producer数据已经发送成功,会唤醒一个线程去将数据持久化到CommitLog日志文件中。
- 优缺点分析:同步刷盘保证了消息不丢失,但是响应时间相对异步刷盘要多出10%左右,适用于对消息可靠性要求比较高的场景。异步刷盘的吞吐量比较高,RT小,但是如果broker断电了内存中的部分数据会丢失,适用于对吞吐量要求比较高的场景。
昔我往矣
杨柳依依
今我来思
雨雪霏霏
RabbitMQ 常见问题的更多相关文章
- RabbitMQ的几个常见问题
1. 如何保证消息尽量发送成功? 问题描述: 如果没有启动消费者,重启了RabbitMQ服务,队列和消息都会丢失. 解决方案: 针对这个问题,有以下几个机制可以解决: 生产者确认: 持久化: 手动AC ...
- 【攻克RabbitMQ】常见问题
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/zlt995768025/article/ ...
- [Open Source] RabbitMQ 安装与使用
前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异构系统间的整合: 安装 下载 Er ...
- RabbitMQ可靠性投递及高可用集群
可靠性投递: 首先需要明确,效率与可靠性是无法兼得的,如果要保证每一个环节都成功,势必会对消息的收发效率造成影响.如果是一些业务实时一致性要求不是特别高的场合,可以牺牲一些可靠性来换取效率. 要保证消 ...
- centos 7 rabbitmq 3.7.12 erlang 20.3源码安装
1.下载erlang 官网地址 http://www.erlang.org/download 挑选合适的版本 然后 建议20.3运行命令 wget http://erlang.org/download ...
- Spring Cloud Stream消费失败后的处理策略(四):重新入队(RabbitMQ)
应用场景 之前我们已经通过<Spring Cloud Stream消费失败后的处理策略(一):自动重试>一文介绍了Spring Cloud Stream默认的消息重试功能.本文将介绍Rab ...
- RabbitMQ 安装与使用
RabbitMQ 安装与使用 前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异 ...
- rabbitmq集群部署及配置
消息中间件rabbitmq,一般以集群方式部署,主要提供消息的接受和发送,实现各微服务之间的消息异步.本篇将以rabbitmq+HA方式进行部署. 一.原理介绍 rabbitmq是依据erlang的分 ...
- 关于 RabbitMQ 的 Dead-Letters-Queue “死信队列”
来自一个队列的消息可以被当做‘死信’,即被重新发布到另外一个“exchange”去,这样的情况有: 消息被拒绝 (basic.reject or basic.nack) 且带 requeue=fa ...
- CentOS 6.8 源码安装RabbitMQ
一.安装依赖环境 yum install build-essential openssl openssl-devel unixODBC unixODBC-devel make gcc gcc-c++ ...
随机推荐
- mydodo协议
mydodo协议 目录 数据帧结构 命令 协议 代码样例 数据帧结构 帧头1 帧头2 设备号 命令 数据长度 数据 0x4D 0x59 xxx cmd nByte data 例子:设备my01 的继电 ...
- 【ACG】博主在专栏更新内容后,及时通知关注他的用户去阅读
业务场景 当用户打开应用时,系统发送Push消息给用户,向用户推荐博主信息.用户关注博主后,将保存用户的订阅信息,当关注的博主更新内容时,向订阅的用户发送短信,提醒用户及时查看最新内容.从而持续增 ...
- byte[]数组转换string类型
byte[] OutData = new byte[2048];//交易返回数据 string pBusiCardInfoStr = Encoding.Default.GetString(OutDat ...
- k8s驱逐篇(4)-kube-scheduler抢占调度驱逐
介绍kube-scheduler抢占调度驱逐之前,先简单的介绍下kube-scheduler组件: kube-scheduler简介 kube-scheduler组件是kubernetes中的核心组件 ...
- Docker 部署 RocketMQ Dledger 集群模式( 版本v4.7.0)
文章转载自:http://www.mydlq.club/article/97/ 系统环境: 系统版本:CentOS 7.8 RocketMQ 版本:4.7.0 Docker 版本:19.03.13 一 ...
- Centos7主机安装Cockpit管理其他主机
前提条件:需要管理的每台服务器上都需要安装cockpit 假设Centos7主机安装Cockpit的为A,其他主机为B 如果B上有A的公钥,那么直接连接至B,否则,输入B的用户名密码连接. 问题:在A ...
- Kibana可视化数据(Visualize)详解
可视化 (Visualize) 功能可以为您的 Elasticsearch 数据创建可视化控件.然后,您就可以创建仪表板将这些可视化控件整合到一起展示. Kibana 可视化控件基于 Elastics ...
- Visual Studio 2022 开发 STM32 单片机 - 环境搭建点亮LED灯
安装VS2022社区版软件 选择基础的功能就好 安装VisualGDB软件(CSDN资源) 按照提示一步一步安装就好 VisualGDB激活软件(CSDN资源) 将如下软件放在VisualGDB的安装 ...
- Oracle基础知识汇总一
Oracle基础知识 以下内容为本人的学习笔记,如需要转载,请声明原文链接 https://www.cnblogs.com/lyh1024/p/16720759.html oracle工具: SQ ...
- 手把手教你使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用(含源码)
前言 今天我们一起来使用LabVIEW AI视觉工具包快速实现图像的滤波与增强:图像灰度处理:阈值处理与设定:二值化处理:边缘提取与特征提取等基本操作.工具包的安装与下载方法可见之前的博客. 一.图像 ...