题面

题解

加入一条线段,可以把它转化为在[L,R]区间内加一条线 y=ax+b (如果原线段与y轴平行,就相当于在{x1}处加一条线 y=max(y1,y2))

我们可以把它加到线段树上,线段树上每个点存一个区间内贯穿整个区间的一条对答案有贡献的线段(因为是贯穿整个区间,所以存一个 {a,b} 表示 y=ax+b 就行了)。

一条线段是这么加上去的:

查询要遍历路径上的所有点:

接下来,最大的问题就是,它会产生冲突!

当我们加一条线段到线段树上,而原来节点上就已经有了一条线段怎么办?

首先,如果其中一条线段凌驾于另一条之上,肯定直接判了嘛,

但是,出问题的就是两条线段交叉,

而线段树上的节点存不了“V”字形,也维护不了(除了写平衡树的大佬)

这里就要用到一个“启发式下传”的思想

一般的暴力想法就是先把原来的线段先下传了,再把新线段放上去:

稍微有点想法的人会先把“V”字形处理出来,并把两条线段拆开下传(虽然并没有什么*用):

这时候,较聪明的人就会想,为什么原来的地方要空着呢?把其中随便一条线段留在原处,对答案也没有影响,但是却快得多:

最后,深谙暴力优化精髓的人会想,数据肯定会卡每次下传的线段长度只比原先段短一点的情况,便把“V”字形两条线段中短的一条下传,

于是便优化出了正解:

我们会发现,每次一旦冲突,便会开始下传,每次下传的线段长度至少会减半,所以,下传复杂度为O(log),加线段复杂度就为O(log^2)

查询复杂度没变,总复杂度就为O(mlog^2)

CODE

#include<map>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 50005
#define MAXM 100005
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) ((-x)&(x))
//#define int LL
//#pragma GCC optimize(2)
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f=-f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s=getchar();}
return f*x;
}
const int MOD = 998244353;
int n,m,i,j,s,o,k;
struct it{
DB x,y;
it(){x = y = 0;}
it(DB X,DB Y){x=X;y=Y;}
};
it cg(it a,it b) {
DB k = (a.y - b.y) / (a.x - b.x);
DB B = a.y - a.x * k;
return it(k,B);
}
it jd(it a,it b) {
DB xx = (b.y - a.y) / (a.x - b.x);
return it(xx,a.x*xx+a.y);
}
bool abov(it a,it st) {
DB y2 = a.x * st.x + st.y;
return a.y >= y2;
}
bool operator < (it a,it b) {return a.y < b.y;}
bool operator > (it a,it b) {return b < a;}
bool operator <= (it a,it b) {return a.y <= b.y;}
bool operator >= (it a,it b) {return b <= a;}
struct tr{
int l,r;
it st;
tr(){l=r=0;st=it(0,-1e9);}
}tre[MAXM<<4];
void maketree(int a,int l,int r) {
tre[a].l = l;tre[a].r = r;
if(l < r) {
int mid = (l+r)>>1;
maketree(a<<1,l,mid);
maketree(a<<1|1,mid+1,r);
}
return ;
}
void addtree(int a,int l,int r,it st) {
if(tre[a].l > r || tre[a].r < l) return ;
if(tre[a].l >= l && tre[a].r <= r) {
DB ll = (DB)tre[a].l,rr = (DB)tre[a].r;
it l1 = it(ll,ll*tre[a].st.x+tre[a].st.y);
it r1 = it(rr,rr*tre[a].st.x+tre[a].st.y);
it l2 = it(ll,ll*st.x+st.y),r2 = it(rr,rr*st.x+st.y);
if(l1 >= l2 && r1 >= r2) return ;
if(l2 >= l1 && r2 >= r1) {
tre[a].st = st; return ;
}
it md = jd(st,tre[a].st); int mid = (tre[a].l+tre[a].r)>>1;
it ls = (l1 >= l2 ? tre[a].st:st),rs = (r1 >= r2 ? tre[a].st:st);
if(md.x <= (DB)mid) tre[a].st = rs,addtree(a<<1,l,r,ls);
else tre[a].st = ls,addtree(a<<1|1,l,r,rs);
return ;
}
addtree(a<<1,l,r,st);addtree(a<<1|1,l,r,st);
return ;
}
DB query(int a,int ad) {
if(tre[a].l > ad || tre[a].r < ad) return -1e9;
if(tre[a].l == tre[a].r) {
return ad*tre[a].st.x + tre[a].st.y;
}
return max(ad*tre[a].st.x+tre[a].st.y,max(query(a<<1,ad),query(a<<1|1,ad)));
}
int main() {
n = read();m = read();
maketree(1,1,100000);
for(int i = 1;i <= n;i ++) {
it a,b;
a.x = (DB)read();
a.y = (DB)read();
b.x = (DB)read();
b.y = (DB)read();
if(a.x > b.x) swap(a,b);
it st;
if(a.x == b.x) st = it(0,max(a.y,b.y));
else st = cg(a,b);
int ll = (int)a.x,rr = (int)b.x;
addtree(1,ll,rr,st);
}
for(int i = 1;i <= m;i ++) {
k = read();
if(!k) {
it a,b;
a.x = (DB)read();
a.y = (DB)read();
b.x = (DB)read();
b.y = (DB)read();
if(a.x > b.x) swap(a,b);
it st;
if(a.x == b.x) st = it(0,max(a.y,b.y));
else st = cg(a,b);
int ll = (int)a.x,rr = (int)b.x;
addtree(1,ll,rr,st);
}
else {
int x0 = read();
DB ans = query(1,x0);
printf("%.4f\n",ans < -1e8 ? 0.0:ans);
}
}
return 0;
}

「雅礼集训 2017 Day2」线段游戏(线段树懒标记“启发式下传”,李超树)的更多相关文章

  1. #6034. 「雅礼集训 2017 Day2」线段游戏 李超树

    #6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统 ...

  2. 【loj6034】「雅礼集训 2017 Day2」线段游戏

    #6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:Special Judge 上传者: 匿名 题目描述 ...

  3. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  4. 【LOJ6029】「雅礼集训 2017 Day1」市场(线段树裸题)

    点此看题面 大致题意: 维护序列,支持区间加法,区间除法(向下取整),区间求\(min\)和区间求和. 线段树维护区间除法 区间加法.区间求\(min\)和区间求和都是线段树基本操作,因此略过不提. ...

  5. loj #6032. 「雅礼集训 2017 Day2」水箱 线段树优化DP转移

    $ \color{#0066ff}{ 题目描述 }$ 给出一个长度为 \(n\) 宽度为 \(1\) ,高度无限的水箱,有 \(n-1\) 个挡板将其分为 \(n\) 个 \(1 - 1\) 的小格, ...

  6. loj#6034 「雅礼集训 2017 Day2」线段游戏

    分析 区间李超树板子题 代码 #include<bits/stdc++.h> using namespace std; #define db double const int inf = ...

  7. LOJ#6032. 「雅礼集训 2017 Day2」水箱

    传送门 首先可以有一个平方复杂度的 \(DP\) 设 \(f_{i,j}\) 表示前面 \(i\) 个小格,高度为 \(j\) 的最大答案 令 \(h_i\) 表示隔板 \(i\) 的高度 当 \(j ...

  8. LOJ#6048. 「雅礼集训 2017 Day10」数列(线段树)

    题面 传送门 题解 我的做法似乎非常复杂啊-- 首先最长上升子序列长度就等于把它反过来再接到前面求一遍,比方说把\(2134\)变成\(43122134\),实际上变化之后的求一个最长上升子序列和方案 ...

  9. 「雅礼集训 2017 Day2」水箱

    题目链接 题意分析 我们用\(f[i][j]\)表示当前到达第\(i\)个位置水位高度为\(j\)的答案 如果那么\(h[i]\)为\(i\)和\(i+1\)之间的支柱高度 那么如果\(j≤h[i]\ ...

随机推荐

  1. CentOS切换用户命令su or su+username

    1.打开终端,提示符为"$",表明该用户为普通用户,此时,直接输su,回车,输入root密码,回车,就可以切换到root用户下,此时的提示符变为"#". 注意, ...

  2. 探索链路追踪在.NET6工业物联网项目的应用

    ExploringIoTDistributedTracingNet6 如果觉得有用,请留言学到了. 已经会了的老哥,请留言就这? 可能遇到的问题 工业物联网项目自上而下一般分为ERP.Mes.SCAD ...

  3. 针对elementUI 中InfiniteScroll按需引入的一点注意事项

    大家为了节省空间,常常进行按需引入来节省空间,这里我给大家来介绍一下element中按需引入无限滚动指令注意的事项. 针对前面element 按需引入的一些配置这里就不再详细介绍了. 那么这里讲的是在 ...

  4. Vue.js与ElementUI搭建无限级联层级表格组件

    前言 今天,回老家了.第一件事就是回家把大屏安排上,写作的感觉太爽了,终于可以专心地写文章了.我们今天要做的项目是怎么样搭建一个无限级联层级表格组件,好了,多了不多说,赶快行动起来吧!项目一览 到底是 ...

  5. MySQL-5-TCL,视图,变量,存储过程和函数,流程控制

    TCL:Transaction Control Language事务控制语言 TCL 事务的特点 acid: 原子性(Atomicity),一致性(Consistency),隔离性(isolation ...

  6. mysql备份数据库linux

    备份数据库 问题描述: ​ 我们用的是mysql,以今天遇到的情况为例,我们是在两台服务器上要搭相同的平台,部署完成后页面报错,发现是数据库的问题,我们打开数据库查看,确实数据库中少建一个wind数据 ...

  7. 【数据库Mysql 查询当前时间,年月日】

    1.本年份 SELECT YEAR(now()) SELECT DATE_FORMAT(NOW(), '%Y') 2.本月份(例如:1.01.January) SELECT MONTH(now()) ...

  8. LinkedList集合和Vector集合

    LinkedList集合数据存储的结构是链表结构.方便元素添加.删除的集合.实际开发中对一个集合元素的添加与删除经常涉及到首尾操作,而LinkedList提供了大量首尾操作的方法 LinkedList ...

  9. ooday07 Java_接口

    笔记: 接口: 是一种引用数据类型 由interface定义 只能包含常量和抽象方法------默认权限是public 接口不能被实例化 接口是需要被实现/继承,实现/派生类:必须重写所有抽象方法 一 ...

  10. 电子表格分两级:Excel和WPS是一级,未来5年,75%的人将用二级

    你印象中的电子表格软件是哪些? 估计绝大多数人,都认为电子表格软件不就是Excel和WPS吗?顶多再加上永中office么,难道还有其他的电子表格软件不成? 没有错,excel和WPS,还有永中,确实 ...