\begin{equation}\begin{aligned}
\min \quad & z=\mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A} \mathbf{x}=\mathbf{b} \\
& \ell \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}\end{equation}

The types of the components
of x are defined as

\begin{equation}
\begin{aligned}
&\mathcal{U}=\left\{k: k \in \mathcal{R}, x_{k}=u_{k}\right\}\\
&\mathcal{M}=\left\{i: x_{k_{i}}<0, i \in \mathcal{I}_{0} \cup \mathcal{I}_{1} \cup \mathcal{I}_{2}\right\}\\
&\mathcal{P}=\left\{i: x_{k_{i}}>u_{k_{i}}, i \in \mathcal{I}_{0} \cup \mathcal{I}_{1}\right\}\\
&\mathcal{F}=\mathcal{I} \backslash(\mathcal{M} \cup \mathcal{P})
\end{aligned}
\end{equation}

Using notation $\beta = x_{\mathcal{B}}$ we can simplify the reference to basic variables. As a measure of infeasibility we use the negative of the sum of violations:
$$w=\sum_{i \in \mathcal{M}} \beta_{i}-\sum_{i \in \mathcal{P}}\left(\beta_{i}-v_{i}\right)$$
Obviously, $w \geq 0$. If $w = 0$ then both $\mathcal{M}$ and $\mathcal{P}$ are empty and the
solution is feasible.

So it is translated into
\begin{equation}\begin{aligned}
\max \quad & w \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \ell \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}\end{equation}

We can investigate how feasibility of the basis is affected if a nonbasic
variable is displaced by t in the feasible direction. First, assume the
displacement is nonnegative, $t \geq O$. The i-th basic variable as a function of t is
$$\beta_{i}(t)=\beta_{i}-t \alpha_{q}^{i}$$
$\boldsymbol{\alpha}_{q}=\mathbf{B}^{-1} \mathbf{a}_{q}, \boldsymbol{\beta}=\mathbf{B}^{-1} \mathbf{b}_{\mathcal{U}}, \boldsymbol{\beta}(t)=\mathbf{x}_{\mathcal{B}}(t)$.

Given $\mathcal{M} \cup \mathcal{P} \neq \emptyset$ and $j \in \mathcal{R}$ with . w can be
improved by increasing the value of $x_{j}$ only if

$$d_{j}=\sum_{i \in \mathcal{M}} \alpha_{j}^{i}-\sum_{i \in \mathcal{P}} \alpha_{j}^{i}<0$$

If the infeasibility sets M and P remain unchanged only for t = 0
then the basis is degenerate.

A feasible displacement of a variable can also be negative. In this
case, w can be improved by decreasing Xj if $d_j >0$.

Define vector h with components
$$h_{i}=\left\{\begin{array}{ll}
1, & \text { if } i \in \mathcal{M} \\
-1, & \text { if } i \in \mathcal{P} \\
0, & \text { otherwise }
\end{array}\right.$$
It is easy to see that
$$d_{j}=\mathbf{h}^{T} \boldsymbol{\alpha}_{j}=\mathbf{h}^{T} \mathbf{B}^{-1} \mathbf{a}_{j}$$

just like the
phase-2 simplex multiplier $\pi$, by
$$\boldsymbol{\phi}^{T}=\mathbf{h}^{T} \mathbf{B}^{-1}$$

Define
$$\begin{array}{l}
K^{-}=\left\{\begin{array}{ll}
0, & \text { if } K \geq 0 \\
K, & \text { if } K<0
\end{array}\right. \\
K^{+}=\left\{\begin{array}{ll}
K, & \text { if } K>0 \\
0, & \text { if } K \leq 0
\end{array}\right.
\end{array}$$

The measure of infeasibility as a function of t can be expressed as

$$\begin{aligned}
w(t) &=\sum_{i \in \mathcal{I}_{\ell}}\left[\beta_{i}(t)\right]^{-}-\sum_{i \in \mathcal{I}_{u}}\left[\beta_{i}(t)-v_{i}\right]^{+} \\
&=\sum_{i \in \mathcal{I}_{\ell}}\left[\beta_{i}-t \alpha_{i}\right]^{-}-\sum_{i \in \mathcal{I}_{u}}\left[\beta_{i}-t \alpha_{i}-v_{i}\right]^{+}
\end{aligned}$$
where $\mathcal{I}_{\ell}=\mathcal{I}_{0} \cup \mathcal{I}_{1} \cup \mathcal{I}_{2}$ (index set of basic variables with 0 lower bound) and $\mathcal{I}_{u}=\mathcal{I}_{0} \cup \mathcal{I}_{1}$
(basic variables with finite upper bound).

Analysis of w(t)

The contribution of the $\beta_{i}(t)$ to $w(t)$ is illustrated
in figures 9.4, 9.5 and 9.6.

When t moves away from 0 in the positive direction the first change in
the feasibility status of one of the basic variables occurs when t reaches
the first break point. It is the smallest of the ratios defined in (9.87) and
(9.88). Since we want to pass this point and want to do further steps we
assume that the break points are sorted into ascending order:
$$0 \leq t_{1} \leq \cdots \leq t_{S}$$

t if $x_q$ is the selected improving variable
coming in from lower bound then the rate of change of $w(t)$ is $-d_q$. Therefore, in the [0, tIl interval w(t) increases by -dqtl.
Denoting
$$r_{1}=-d_{q}=-\left(\sum_{i \in \mathcal{M}} \alpha_{i}-\sum_{i \in \mathcal{P}} \alpha_{i}\right)$$

$$r_{k+1}=r_{k}-\left|\alpha_{j_{k}}\right|, \quad k=1, \ldots, S$$
The maximum of w(t) is defined by index s for which
$$\begin{array}{lll}
r_{s}>0 & \text { and } & r_{s+1} \leq 0
\end{array}$$
$$w\left(t_{k}\right)=w\left(t_{k-1}\right)+\left(t_{k}-t_{k-1}\right) r_{k}, \quad k=1, \ldots, s$$

LP两阶段法(一阶段)的更多相关文章

  1. 分布式事务 & 两阶段提交 & 三阶段提交

    可以参考这篇文章: http://blog.csdn.net/whycold/article/details/47702133 两阶段提交保证了分布式事务的原子性,这些子事务要么都做,要么都不做. 而 ...

  2. javaScript 变量提升 var let const,以及JS 的解析阶段和执行阶段

    我们先来看一道面试题,大家猜想一下,下面这段代码,打印出来的结果是什么 var name = 'World!'; (function () { if (typeof name === 'undefin ...

  3. PHP程序员的技术成长规划 第一阶段:基础阶段

    第一阶段:基础阶段(基础PHP程序员) 重点:把LNMP搞熟练(核心是安装配置基本操作)目标:能够完成基本的LNMP系统安装,简单配置维护:能够用PHP源码做基本的简单系统的PHP开发:能够在PHP中 ...

  4. 分布式事务解决方案(一) 2阶段提交 & 3阶段提交 & TCC

    参考文档:http://blog.jobbole.com/95632/https://yq.aliyun.com/articles/582282?spm=a2c4e.11163080.searchbl ...

  5. web测试一般分为那几个阶段,哪些阶段是可以用工具实现的,都有些什么工具,哪些阶段必须要人工手动来实现呢?

    这是我在知乎上遇到的一个问题: web测试一般分为那几个阶段,哪些阶段是可以用工具实现的,都有些什么工具,哪些阶段必须要人工手动来实现呢? 首先这个提问本身就是有问题的, 没有哪个阶段是用工具实现的, ...

  6. MT【168】还是两根法

    设二次函数$f(x)=ax^2+bx+c(a>0)$,方程$f(x)=x$的两根$x_1,x_2$满足$0<x_1<x_2<\dfrac{1}{a}$,(Ⅰ)当$x\in(0, ...

  7. PHP程序员的技术成长规划 第三阶段:高级阶段

    第三阶段:高级阶段 (高级PHP程序员)重点:除了基本的LNMP程序,还能够在某个方向或领域有深入学习.(纵深维度发展)目标:除了能够完成基本的PHP业务开发,还能够解决大部分深入复杂的技术问题,并且 ...

  8. rest_famework 增删改查初第三阶段(高级,此阶段是优化第二阶段的代码)的使用

    url: re_path('authors/$', views.AuthorView.as_view()), re_path('book/(?P<pk>\d+)/$', views.Boo ...

  9. rest_famework 增删改查初第四阶段(最高级,此阶段是优化第三阶段的代码)的使用

    两个url 共用一个视图 url url(r'^books/$', views.BookViewSet.as_view({"get":"list"," ...

  10. 分布式事务(一)两阶段提交及JTA

    原创文章,同步发自作者个人博客 http://www.jasongj.com/big_data/two_phase_commit/ 分布式事务 分布式事务简介 分布式事务是指会涉及到操作多个数据库(或 ...

随机推荐

  1. 方法综合练习:out、params、ref

    using System; namespace ConsoleApp1 { class Program { /// <summary> /// 求两个参数之间的最大值 /// </s ...

  2. java自定义的异常类

    java自定义的异常类 1.自定义异常类,需要继承 RuntimeException @Datapublic class EmployeeCheckException extends RuntimeE ...

  3. vue中v-if与v-show区别

    vue中显隐方法常用两种,v-show和v-if,但这两种是有区别的. v-if v-if 控制元素显示或隐藏是把dom元素整个的渲染或者删除,如果删除,也就是页面中不存在这个dom元素,以此达到隐藏 ...

  4. iOS开发之时间格式化

    //返回当前时间,以GMT为准 NSDate * date = [NSDate date]; NSLog(@"%@", date); //显示当前时间距离1970-01-01 00 ...

  5. [336] Prelude PTS OpCodes

    [336] Prelude PTS Client 00 SendProtocolVersion 01 MoveBackwardToLocation 02 Say 03 RequestEnterWorl ...

  6. win10任务栏图标设置“不合并标签但隐藏文字”

    设置如图不分组即可,下载链接 https://files-cdn.cnblogs.com/files/slyuan/7tt_setup.rar

  7. 【BOOK】解析库--Beautiful Soup

    1.安装bs4库 2.解析器 3.节点选择器 from bs4 import BeautifulSoup html = ''' <html> <head><title&g ...

  8. el-dropdown-item 添加点击 事件无效 (vue)

    如图 无效!!! 为什么呢?? 想了一下,可能是因为 el-dropdown-item   没有自定义click事件 so! 解决办法就是  添加原生事件  :  @click.native   还有 ...

  9. x-www-form-urlencoded请求封装

    <dependency> <groupId>commons-httpclient</groupId> <artifactId>commons-httpc ...

  10. Unity中实现在规定时间内从一个值递增到另一个值

    1.进度条(在规定时间内完成进度条) private Image progressBar; private float currentProgress = 0; /// <summary> ...