虽然这道题的题目标签有颜色段均摊和并查集,但是这道题的做法与这两个算法并无关系。

考虑从询问的右往左扫描数组。设\(g_i\)表示以第\(i\)个询问为左端点,最大的\(g_i\)令\(sol(1,n)=sol(i,g_i)\),则\(f_i=m-g_i+1\)。设\(b\)表示执行完编号为\(1\to m\)操作的数组

设\(a_j\)表示扫到\(i\),最大的\(a_j\)使得执行完\(i\to a_j\)的所有操作后\(a_j=b_j\),则答案等于\(\max(a_{1...n})\)。

考虑在左添加一个第\(i\)个操作如何更新\(a_j\)。显然添加一个操作的结果是把\(x_i=b_i\)且\(l_i\leq i\leq r_i\)的所有\(a_i\)都对\(i\)取\(\min\)

考虑把所有数按照\(b_i\)的值分组,并且把每个组内的元素按照在原数组的下标从小到大编号为\(0,1,2,3...\),那么问题转化成:每次对某组的某个区间对\(i\)取\(\min\)(这个区间可以二分求),并且求出所有组的数的最大值。

由于所有组的数的最大值等于所有组的所有数取\(\max\),所以可以设\(h_i\)表示第\(i\)组的最大值,可以在线段树上区间修改求出\(h\)。

\(a_i\)显然随着\(i\)的降低而降低,所以答案随着\(i\)的减小单调递减。且\(x_i\leq 10^6\),所以可以用桶维护\(x_i\)。

然而这道题的空间只有128MB,所以不能用vector存储线段树,而应该用指针和new分配内存,不然会被卡。

#include<bits/stdc++.h>
using namespace std;
#define N 1000010
int n,m,mn[N*4],l[N],r[N],x[N],va[N],ct[N],*g[N],*h[N];
vector<int>v[N];
void mp(int o,int l,int r,int x,int y,int z){
if(r<x||y<l)
return;
if(x<=l&&r<=y){
mn[o]=max(mn[o],z);
return;
}
int md=(l+r)/2;
mp(o*2,l,md,x,y,z);
mp(o*2+1,md+1,r,x,y,z);
}
void pd(int o,int l,int r,int x){
x=max(x,mn[o]);
if(l==r){
va[l]=x;
return;
}
int md=(l+r)/2;
pd(o*2,l,md,x);
pd(o*2+1,md+1,r,x);
}
void pd(int p,int o){
h[p][o*2]=min(h[p][o*2],h[p][o]);
h[p][o*2+1]=min(h[p][o*2+1],h[p][o]);
g[p][o*2]=min(g[p][o*2],h[p][o]);
g[p][o*2+1]=min(g[p][o*2+1],h[p][o]);
}
void mo(int o,int l,int r,int x,int y,int z,int p){
if(r<x||y<l)
return;
if(x<=l&&r<=y){
h[p][o]=z;
g[p][o]=min(g[p][o],z);
return;
}
pd(p,o);
int md=(l+r)/2;
mo(o*2,l,md,x,y,z,p);
mo(o*2+1,md+1,r,x,y,z,p);
g[p][o]=max(g[p][o*2],g[p][o*2+1]);
}
int fd(int o,int l,int r){
if(l==r)
return o;
int md=(l+r)/2;
return max(fd(o*2,l,md),fd(o*2+1,md+1,r));
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&l[i],&r[i],&x[i]);
mp(1,1,n,l[i],r[i],x[i]);
}
pd(1,1,n,0);
for(int i=1;i<=n;i++)
v[va[i]].push_back(i);
for(int i=1;i<=m;i++){
l[i]=lower_bound(v[x[i]].begin(),v[x[i]].end(),l[i])-v[x[i]].begin();
r[i]=lower_bound(v[x[i]].begin(),v[x[i]].end(),r[i]+1)-v[x[i]].begin()-1;
}
for(int i=1;i<=1e6;i++)
if(v[i].size()){
int sz=fd(1,0,v[i].size()-1);
g[i]=new int[sz+1];
h[i]=new int[sz+1];
for(int j=0;j<=sz;j++)
g[i][j]=h[i][j]=m+1;
ct[m+1]++;
}
int mx=m+1,lf=0,f;
unsigned int a1=0,a2=0,a3=0;
for(int i=m;i;i--){
if(l[i]>r[i]||!v[x[i]].size())
f=lf;
else{
int sz=v[x[i]].size()-1;
ct[g[x[i]][1]]--;
mo(1,0,sz,l[i],r[i],i,x[i]);
ct[g[x[i]][1]]++;
while(!ct[mx]&&mx)
mx--;
f=m-mx+1;
}
a1^=f*i;
a2+=f*i;
a3+=f;
lf=f;
}
printf("%u %u %u",a3,a1,a2);
}

lg8936题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. uniapp详细入门教程

    链接:https://www.ruletree.club/archives/2071/ 点击链接查看,内容详细,一学就会哦~! /******** * * .-~~~~~~~~~-._ _.-~~~~ ...

  2. 【c#】从外部复制文本、图片到我的软件中的解决方案(支持ppt,qq等)

    原文地址 https://www.cnblogs.com/younShieh/p/17010572.html 如果本文对你有所帮助,不妨点个关注和推荐呀,这是对笔者最大的支持~       我们先考虑 ...

  3. Java读取文件后文件被占用

    Java读取文件响应后文件一直被占用问题 原因: 由于是封装的函数,请求和响应对象都是 形参地址 虽然在此函数里关闭了输出流,但是由于有返回值,调用未结束,输出流无法提前关闭 解决: 1:调用函数后, ...

  4. A. Greatest Convex【Codeforces Round #842 (Div. 2)】

    A. Greatest Convex You are given an integer \(k\). Find the largest integer \(x\), where \(1≤x<k\ ...

  5. 拜占庭将军问题与CAP

    1.拜占庭将军问题 拜占庭位于如今的土耳其的伊斯坦布尔,是东罗马帝国的首都.由于当时拜占庭罗马帝国国土辽阔,为了达到防御目的,每个军队都分隔很远,将军与将军之间只能靠信差传消息.在战争的时候,拜占庭军 ...

  6. 踩坑实录---Angular防抖——点击事件

    npx ng g directive DebounceClickDirective --module=app 然后自动生成了2 个文件 CREATE src/app/debounce-click-di ...

  7. Docker安装与卸载(基本命令)

    Dockers的安装搭建 参考: https://www.cnblogs.com/jxxiaocao/p/12069139.html 采用apt源安装Docker的其他组件时,新组件与已安装的Dock ...

  8. Java微服务随机掉线排查思路

    背景 我们的业务共使用11台(阿里云)服务器,使用SpringcloudAlibaba构建微服务集群,共计60个微服务,全部注册在同一个Nacos集群 流量转发路径: nginx->spring ...

  9. Node.js学习笔记----day05(在Node中操作MySQL)

    认真学习,认真记录,每天都要有进步呀!!! 加油叭!!! 一.安装 初始化项目 安装mysql(这里的mysql是node用来操作mysql的一个第三方包,包的名字就叫mysql) 安装mysql包的 ...

  10. vue3 ts遇到的问题

    main.ts中的 createApp(App),只作用于一个,如果,有两个,则并不是一个对象,另一个会不生效