BZOJ3732 (Kruskal重构树)
Kruskal重构树上\(x\)和\(v\)的\(lca\)的权值即为它们最长路最小值
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define ll long long
#define u32 unsigned int
#define u64 unsigned long long
#define ON_DEBUGG
#ifdef ON_DEBUGG
#define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#include <ctime>
#define TIME() fprintf(stderr, "\ntime: %.3fms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
//char buf[1 << 21], *p1 = buf, *p2 = buf;
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
#endif
using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io;
template<typename ATP>inline ATP Max(ATP a, ATP b){
return a > b ? a : b;
}
template<typename ATP>inline ATP Min(ATP a, ATP b){
return a < b ? a : b;
}
template<typename ATP>inline ATP Abs(ATP a){
return a < 0 ? -a : a;
}
const int N = 30007;
struct Edge{
int nxt, pre;
}e[N << 2];
int head[N], cntEdge;
inline void add(int u, int v){
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
}
struct node{
int x, y, w;
bool operator < (const node &com) const{
return w < com.w;
}
}a[N << 1];
int n, m;
int val[N];
namespace KRUS{
int fa[N];
inline int Find(int x){
return x == fa[x] ? x : fa[x] = Find(fa[x]);
}
inline void Kruskal(){
sort(a + 1, a + m + 1);
int tot = n + 1, lim = n << 1;
R(i,1,lim) fa[i] = i;//, siz[i] = 1;
R(i,1,m){
int p = Find(a[i].x), q = Find(a[i].y);
if(p != q){
fa[p] = fa[q] = tot;
val[tot] = a[i].w;
add(tot, p), add(tot, q);
// add(p, tot), add(q, tot);
if(++tot >= lim) break;
}
}
}
}
namespace TCP{
int fa[N], top[N], son[N], siz[N], dep[N];
inline void DFS_First(int u, int father){
fa[u] = father, siz[u] = 1, dep[u] = dep[father] + 1;
for(register int i = head[u]; i;i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
DFS_First(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void DFS_Second(int u, int TP){
top[u] = TP;
if(!son[u]) return;
DFS_Second(son[u], TP);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != fa[u] && v != son[u])
DFS_Second(v, v);
}
}
inline int LCA(int x, int y){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) Swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
}
int main(){
freopen("3732Network.in", "r", stdin);
freopen("3732Network.out", "w", stdout);
int Q;
io >> n >> m >> Q;
R(i,1,m){
io >> a[i].x >> a[i].y >> a[i].w;
}
KRUS::Kruskal();
int root = (n << 1) - 1; // root is 2 * n - 1
TCP::DFS_First(root, 0);
TCP::DFS_Second(root, root);
while(Q--){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
printf("%d\n", val[TCP::LCA(u, v)]);
}
return 0;
}
BZOJ3732 (Kruskal重构树)的更多相关文章
- Kruskal重构树学习笔记+BZOJ3732 Network
今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...
- BZOJ3732: Network(Kruskal重构树)
题意 Link 给出一张$n$个点的无向图,每次询问两点之间边权最大值最小的路径 $n \leqslant 15000, m \leqslant 30000, k \leqslant 20000$ S ...
- BZOJ3732 Network(Kruskal重构树)
Kruskal重构树的模板题. 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N.图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: ...
- kruskal重构树
kruskal重构树 kruskal重构树,顾名思义,是在kruskal的时候顺便搞出来的一棵重构树,具体地说是一个堆. 先说说这个东西是怎么搞出来的吧:默认事先把边按边权从小到大排序,在kruska ...
- [算法模板]Kruskal重构树
[算法模板]Kruskal重构树 kruskal重构树是一个很常用的图论算法.主要用于解决u->v所有路径上最长边的最小值,就是找到\(u->v\)的一条路径,使路径上的最长边最小. 图片 ...
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
随机推荐
- PostgreSQL(一) 编译安装运行
原创,如转发需注明出处. 多年没写博客,一直用的个人笔记软件,最近准备阅读PostgreSQL源码,故记录.(这两年PostgreSQL数据库在某些环境下是比较火的,原因想必大家都清楚.) Postg ...
- Django对接支付宝Alipay支付接口
最新博客更新见我的个人主页: https://xzajyjs.cn 我们在使用Django构建网站时常需要对接第三方支付平台的支付接口,这里就以支付宝为例(其他平台大同小异),使用支付宝开放平台的沙箱 ...
- git 无法拉取最新代码
删除本地文件后,想从远程仓库中重新新Pull最新代码,但是执行了git pull origin develop 命令后始终无法拉取下来 提示 Already up-to-date. 原因:当前本地库处 ...
- linux运维基础1
内容概要 运维简介 运维岗位职责 服务器 服务器硬件介绍 磁盘阵列 虚拟化软件及环境 虚拟化软件 安装操作系统 Vmware虚拟机安装及相关配置流程 内容详情 运维简介 运维岗位职责 核心:运行维护应 ...
- 用一个性能提升了666倍的小案例说明在TiDB中正确使用索引的重要性
背景 最近在给一个物流系统做TiDB POC测试,这个系统是基于MySQL开发的,本次投入测试的业务数据大概10个库约900张表,最大单表6千多万行. 这个规模不算大,测试数据以及库表结构是用Dump ...
- sql-扩展sql
复制表结构 create table 表名 like 被复制的表名; -- 仅复制表表结构 oracle不支持 复制表结构和数据(子查询方式) CREATE TABLE 表名 [AS] SELECT ...
- StringJoiner的使用
1.添加字符串 add()方法 StringJoiner sj = new StringJoiner(","); sj.add("我爱你"); sj.add(& ...
- CesiumJS 2022^ 源码解读[6] - 三维模型(ModelExperimental)新架构
目录 1. ModelExperimental 的缓存机制 1.1. 缓存池 ResourceCache 1.2. 缓存对象的键设计 ResourceCacheKey 2. 三维模型的加载与解析 2. ...
- 写了个 Markdown 命令行小工具,希望能提高园友们发文的效率!
写了个 Markdown 命令行小工具,希望能提高园友们发文的效率! 前言 笔者使用 Typora 来编写 Markdown 格式的博文,图片采用的是本地相对路径存储(太懒了不想折腾图床). 时间久了 ...
- 千位分隔符在web开发中的作用
有千位分隔符会被认为是数字,否则在移动端会被直接识别成手机号 在开发实战中主流实现方式是添加meta标签 <meta name="format-detection" cont ...