任意N阶幻方算法实现
算法原理请参考:https://www.zhihu.com/question/23531676
先定义一些通用的函数,比如创建空幻方,删除幻方,打印幻方。
创建幻方
int **NewMagicS(int n) {
int **magic = new int*[n];
for (int k = 0; k < n; k++)
magic[k] = new int[n];
return magic;
}
删除幻方
void DeleteMagicS(int **magic, int n) {
for (int k = 0; k < n; k++)
delete[] magic[k];
delete[] magic;
}
打印幻方
void ShowMagicS(int **magic, int n) {
int i, j;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
printf("%-6d", magic[i][j]);
printf("\n");
}
}
一、奇数幻方算法实现:
辅助函数(实现算法)
void OddMagicSA(int **magic, int n, int value) {
int i, j, total;
//初始化二维数组
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
magic[i][j] = 0;
i = 0;
j = n / 2;
magic[i][j] = value++;
for (total = 1; total < n*n; total++, value++) {//向右上角移动
//调整位置
if (!magic[(i - 1) == -1 ? n - 1 - i : i - 1][(j + 1) % n]) { //空闲
i = (i - 1) == -1 ? n - 1 - i : i - 1;
j = (j + 1) % n;
}
else //原位置下移一格(行变)
i = (i + 1) % n;
magic[i][j] = value;
}
}
主函数(负责打印)
void OddMagicS(int n) {
int **magic;
if (n <= 0 || n == 1 || n == 2 || (n % 2 == 0)) return;
magic = NewMagicS(n);
OddMagicSA(magic, n, 1);
//显示奇数幻方
ShowMagicS(magic, n);
DeleteMagicS(magic, n);
}
二、偶数幻方算法实现:
辅助函数(算法实现)
void EvenMagicSA(int **magic, int n, int value) {
int i, j;
//初始化二维数组
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
magic[i][j] = 0;
//分割为4x4格子,然后填充对角线位置为-1
for (i = 0; i < n; i += 4)//i, j 表示4x4起点
for (j = 0; j < n; j += 4) {
//对角线填充
for (int k = 0; k < 4; k++) {
magic[i + k][j + k] = -1;
magic[i + 3 - k][j + k] = -1;
}
}
i = 0;
for (; i < n; i++)
for (j = 0; j < n; j++, value++) {
//先填充4x4非对角线,从左向右,从上向下
if (magic[i][j] != -1 && magic[i][j] == 0) magic[i][j] = value;
//填充4x4对角线,左右向左,从下向上
if (magic[n - 1 - i][n - 1 - j] == -1) magic[n - 1 - i][n - 1 - j] = value;
}
}
主要函数(打印幻方)
void EvenMagicS(int n) {
int **magic;
if (n <= 0 || n == 1 || n == 2 || n % 4 != 0) return;
magic = NewMagicS(n);
EvenMagicSA(magic, n, 1);
//显示偶数幻方
ShowMagicS(magic, n);
DeleteMagicS(magic, n);
}
三、最后一个幻方类型叫做奇偶幻方,算法实现:
增加一个幻方复制
void CopyMagicS(int **dstMagic, int sLine, int sColumn, int **srcMagic, int n) {
for (int i = sLine, p = 0; p < n; i++, p++)
for (int j = sColumn, q = 0; q < n; j++, q++)
dstMagic[i][j] = srcMagic[p][q];
}
主要函数(算法实现)
void OddEvenMagicS(int n) {
int **magic, **magicTemp, i, j, k, mid;
if (!(n >= 0 && n != 1 && n != 2 && (n % 2 == 0 && n % 4 != 0))) return;
magic = NewMagicS(n);
magicTemp = NewMagicS(n / 2);
//顺时针分成A,B,C,D四个象限,并且按照A, D, B, C的顺序以奇幻方方法填充
i = j = 0;//A象限
OddMagicSA(magicTemp, n / 2, 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
i = j = n / 2;//D象限
OddMagicSA(magicTemp, n / 2, n / 2 * n / 2 + 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
i = 0;
j = n / 2;//B象限
OddMagicSA(magicTemp, n / 2, n / 2 * n / 2 * 2 + 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
i = n / 2;
j = 0;//C象限
OddMagicSA(magicTemp, n / 2, n / 2 * n / 2 * 3 + 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
k = (n - 2) / 4;
//A, C象限交换
for (int l = 0; l < n / 2; l++)
for (int m = 0; m < k; m++)
if (l == n / 4) {//中间行
mid = magic[l][k + m];
magic[l][k + m] = magic[n / 2 + l][k + m];
magic[n / 2 + l][k + m] = mid;
}
else {
mid = magic[l][m];
magic[l][m] = magic[n / 2 + l][m];
magic[n / 2 + l][m] = mid;
}
//B, D象限交换
for (int l = 0; l < k - 1; l++) {//列
for (int m = 0; m < n / 2; m++) {//行
mid = magic[m][3 * n / 4 - l];
magic[m][3 * n / 4 - l] = magic[n / 2 + m][3 * n / 4 - l];
magic[n / 2 + m][3 * n / 4 - l] = mid;
}
}
//显示奇偶数幻方
ShowMagicS(magic, n);
DeleteMagicS(magic, n);
DeleteMagicS(magicTemp, n / 2);
}
所有代码均经过测试,结果正确。
任意N阶幻方算法实现的更多相关文章
- Java 实现任意N阶幻方的构造
一.关于单偶数阶幻方和双偶数阶幻方 (一)单偶数阶幻方(即当n=4k+2时) 任何4k+2 阶幻方都可由2k+1阶幻方与2×2方块复合而成,6是此类型的最小阶. 以6阶为例,可由3阶幻方与由0,1,2 ...
- 任意阶幻方(魔方矩阵)C语言实现
魔方又称幻方.纵横图.九宫图,最早记录于我国古代的洛书.据说夏禹治水时,河南洛阳附近的大河里浮出了一只乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服.后人称之为&quo ...
- Java 实现奇数阶幻方的构造
一.设计的流程图如下所示 二.Java 语言的代码实现 package MagicSquare; //奇数幻方的实现 public class Magic_Odd { //n 为幻方的阶数 publi ...
- n阶幻方
前序 最近在学习一些经典的算法,搞得头昏脑涨,就想换换脑子.在家里的旧书堆里面乱翻,无意中将一本具有十多年历史的小学数学奥林匹克竞赛的书发掘了出来,能放到现在挺不容易的,就拿起来随便翻翻.看了看目录, ...
- n阶幻方问题
转载自:http://blog.csdn.net/fengchaokobe/article/details/7437767 目录 第一节 n阶幻方问题 第二节 由n阶幻方引发 ...
- 【C】——幻方算法
一.幻方按照阶数可分成了三类,即奇数阶幻方.双偶阶幻方.单偶阶幻方. 二.奇数阶幻方(劳伯法) 奇数阶幻方最经典的填法是罗伯法.填写的方法是: 把1(或最小的数)放在第一行正中:按以下规律排列剩下的( ...
- hdu1998 bjfu1272奇数阶幻方构造
这题就是一个sb题,本来很水,硬是说得很含混.奇数阶幻方构造其实有好多方法,这题既不special judge,也不说清楚,以为这样能把水题变成难题似的,简直想骂出题人. /* * Author : ...
- Codeforces 710C. Magic Odd Square n阶幻方
C. Magic Odd Square time limit per test:1 second memory limit per test:256 megabytes input:standard ...
- codeforces 710C Magic Odd Square(构造或者n阶幻方)
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both ma ...
随机推荐
- 153. Find Minimum in Rotated Sorted Array - LeetCode
Question 153. Find Minimum in Rotated Sorted Array Solution 题目大意:给一个按增序排列的数组,其中有一段错位了[1,2,3,4,5,6]变成 ...
- 好客租房40-react组件基础综合案例-案例需求分析
实现 案例的数据 渲染评论列表 有评论 没有评论 暂无评论 获取评论信息 包括评论人和受控组件 发表评论 更新评论 //导入react import React from 'react' import ...
- PyTorch框架起步
PyTorch框架基本处理操作 part1:pytorch简介与安装 CPU版本安装:pip install torch1.3.0+cpu torchvision0.4.1+cpu -f https: ...
- WPF|快速添加新手引导功能(支持MVVM)
阅读导航 前言 案例一 案例二 案例三(本文介绍的方式) 如何使用? 控件如何开发的? 总结 1. 前言 案例一 站长分享过 眾尋 大佬的一篇 WPF 简易新手引导 一文,新手引导的效果挺不错的,如下 ...
- linux基本命令续(杂糅和转)
此处使用CP 命令复制/etc/profile和/etc/init.d/network到家目录下,当然也可以指定其他目录如./ 根目录等. 在2提示处,如果输错了文字,可以ctrl+backspace ...
- JAVA面向对象之封装和调用
一 面向对象 面向对象的三大特性 1 封装:概念:封装是把过程和数据私有化,打包封存起来,对数据访问只能通过指定的方式.简单的可以理解为你把钱存到银行里,银行专员首先要给你开一个账户,之后你的 ...
- Redis 中的事务分析,Redis 中的事务可以满足ACID属性吗?
Redis 中的事务 什么是事务 1.原子性(Atomicity) 2.一致性(Consistency) 3.隔离性(Isolation) 4.持久性(Durability) 分析下 Redis 中的 ...
- C语言学习之我见-memchr()内存查找字符函数
memchr()内存查找字符函数:主要用于从内存中查找自己需要的字符位置. (1)函数原型: void *memchr(const void *_Buf ,int _Val,size_t _MaxCo ...
- kubernetes code-generator使用
目录 Overview Prerequisites CRD code-generator 编写代码模板 code-generator Tag说明 开始填写文件内容 type.go doc.go reg ...
- UiPath官方视频Level1
[UiPath官方视频Level1]第一课-UiPath简介https://www.bilibili.com/video/BV1zJ41187vB [UiPath官方视频Level1]第二课-变量和数 ...