【BZOJ 4561】【JLOI 2016】圆的异或并
http://www.lydsy.com/JudgeOnline/problem.php?id=4561
一开始并不会做,后来看题解看懂了。
看懂了之后还是错了好几次,数组大小手残开小了。
圆的包含并不包括内切!
具体做法是扫描线, 维护扫描线中的圆和一个垂直于x轴的直线的交点,在扫描线中交点的纵坐标是递增的,每个圆和这条直线有两个交点。
遇到一个圆的左端点,查询它的upper_bound,如果upper_bound是一个圆的上半弧的交点,则它被这个圆包含;如果是一个圆的下半弧的交点,则它和这个圆被包含的状况相同。
然后把它的上半弧和下半弧加入扫描线,为了之后计算交点。
遇到一个圆的右端点,删除它的上半弧和下半弧。
圆只有相离和包含保证了扫描线的正确性。
扫描线可以用splay,set或fhqtreap维护,小神说总之是能查前驱后继的东东
今天终于会用set啦~~~
#include<set>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 200003;
int in() {
int k = 0, fh = 1; char c = getchar();
for (; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for (; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - 48;
return k * fh;
}
struct Circle {
int x, y, r;
Circle(int _x = 0, int _y = 0, int _r = 0)
: x(_x), y(_y), r(_r) {}
} C[N];
struct Point {
int id, x, mark;
Point(int _id = 0, int _x = 0, int _mark = 0)
: id(_id), x(_x), mark(_mark) {}
bool operator < (const Point &A) const {
return x < A.x;
}
} P[N << 1];
struct node {
int id, mark;
node(int _id = 0, int _mark = 0)
: id(_id), mark(_mark) {}
};
ll sqr(int x) {return 1ll * x * x;}
int n, tot = 0, nowx, k[N];
set <node> S;
set <node> :: iterator tmp;
bool operator < (node A, node B) {
double Y1 = (double) C[A.id].y + (double) A.mark * sqrt(sqr(C[A.id].r) - sqr(C[A.id].x - nowx));
double Y2 = (double) C[B.id].y + (double) B.mark * sqrt(sqr(C[B.id].r) - sqr(C[B.id].x - nowx));
return Y1 != Y2 ? Y1 < Y2 : A.mark < B.mark;
}
ll ans = 0;
int main() {
int x, y, r;
n = in();
for (int i = 1; i <= n; ++i) {
x = in(); y = in(); r = in();
C[i] = Circle(x, y, r);
P[++tot] = Point(i, x - r, 1);
P[++tot] = Point(i, x + r, -1);
}
sort(P + 1, P + tot + 1);
for (int i = 1; i <= tot; ++i) {
nowx = P[i].x;
if (P[i].mark == 1) {
tmp = S.upper_bound(node(P[i].id, 1));
if (tmp == S.end())
k[P[i].id] = 1;
else
if (tmp->mark == 1)
k[P[i].id] = -k[tmp->id];
else
k[P[i].id] = k[tmp->id];
S.insert(node(P[i].id, 1));
S.insert(node(P[i].id, -1));
} else {
S.erase(node(P[i].id, 1));
S.erase(node(P[i].id, -1));
}
}
for(int i = 1; i <= n; ++i)
ans += sqr(C[i].r) * k[i];
printf("%lld\n", ans);
return 0;
}
【BZOJ 4561】【JLOI 2016】圆的异或并的更多相关文章
- 计数方法(扫描线):JLOI 2016 圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- bzoj 4561: [JLoi2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线
扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...
- 【BZOJ-4561】圆的异或并 set + 扫描线
4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 254 Solved: 118[Submit][Statu ...
- bzoj4561: [JLoi2016]圆的异或并 圆的扫描线
地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...
- bzoj4561: [JLoi2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*
BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...
- 【BZOJ4561】[JLoi2016]圆的异或并 扫描线
[BZOJ4561][JLoi2016]圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一 ...
- [JLOI2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆 ...
- BZOJ4561:圆的异或并(扫描线+set||splay||线段树)
在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆内则不考虑. I ...
随机推荐
- C#操作Excell常用方法
这是在博客园看的文章,写的很好,所以转一下,方便自己以后用到的时候可以随时查看. range.NumberFormatLocal = "@"; //设置单元格格式为文本 r ...
- iOS开发工程师面试题(一)
SDWEBImge原理 一,先上标答 1)UIImageView+WebCache: setImageWithURL:placeholderImage:options: 先显示 placeholde ...
- iOS开发之功能模块--推送之坑问题解决
不管想不想看我后面再开发中总结的经验,但是很值得推荐一位大神写的关于苹果推送,很多内容哦:http://www.cnblogs.com/qiqibo/category/408304.html 苹果开发 ...
- WinForm常用事件
不定期更新... Load:加载窗体时引发: LocationChanged: KeyDown:一般用做快捷键例如CTRL+S,执行保存 FormClosed: 窗体关闭后,例如登陆窗体为启动窗体,关 ...
- .NET/ASP.NET Routing路由(深入解析路由系统架构原理)
阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模型的入口 4.ASP.NET Routing 路由对象模型的内部结构 4 ...
- BOOST.Asio——Tutorial
=================================版权声明================================= 版权声明:原创文章 谢绝转载 啥说的,鄙视那些无视版权随 ...
- Virtualbox虚机无法启动因断电
The virtual machine 'nn1' has terminated unexpectedly during startup with exit code 1 (0x1). More ...
- EF optimize the perfermance
参考 Three steps for fast entityframework 6.1 code-first startup performance Managing DbContext ...
- 旧文备份:CANopen协议PDO的几种传输方式
(于2007.1.22) 由于PDO所传输的数据内容是无协议的且分配的标识符范围较SDO靠前,因此,其效率和优先级都是较高的,通常用于实时过程数据的传输. PDO是生产/消费类型的通讯方式,数据只有一 ...
- Android(Linux)线路规程的使用
一般来说,车载导航主机都需要外接若干个UART的外设,如支持HFP的蓝牙模块.与原车通信的CAN解码盒模块.u-blox的GPS模块和DVD机芯等.早年使用Telechips TCC8902+ ...