1 多线程入门

1.1 多线程相关的概念

  • 并发与并行

    • 并行:在同一时刻,有多个任务在多个CPU上同时执行。
    • 并发:在同一时刻,有多个任务在单个CPU上交替执行。
  • 进程与线程
    • 进程:就是操作系统中正在运行的一个应用程序。
    • 线程:就是应用程序中做的事情。比如:360软件中的杀毒,扫描木马,清理垃圾。
  • 多线程的概念
    • 是指从软件或者硬件上实现多个线程并发执行的技术。

      具有多线程能力的计算机因有硬件支持而能够在同一时间执行多个线程,提升性能。
    • 好处 : 提高任务的执行性能

1.2 多线程的创建方式

多线程的实现方式主要有三种
1.2.1 继承Thread类
  • 基本步骤

      1. 创建一个类继承Thread类。
      1. 在类中重写run方法(线程执行的任务放在这里)
      1. 创建线程对象,调用线程的start方法开启线程。
  • 优点 :

    • 实现起来比较简单,可以直接使用Thread类中的功能
  • 缺点 :

    • 拓展性较差,只能单继承Thread类,任务执行完毕没有返回值,出现异常只能捕获
1.2.2 实现Runnable接口
  • 基本步骤

      1. 自定义类 实现Runnable接口
      1. 重写 run()方法,在 run() 方法中定义线程执行的任务
      1. 创建任务类对象
      1. 创建线程对象(Thread类对象),把任务类对象作为参数传递给线程类对象
      1. 调用 start() 方法,开启了一条线程
  • 优点 :

    • 代码实现比较简单,拓展性较强,还能继承其他类
  • 缺点 :

    • 不能直接使用Thread类功能,出现异常只能捕获
1.2.3 实现Callable接口
  • 基本步骤

      1. 自定义类 实现Callable接口
      1. 重写call()方法,在call()方法中定义线程执行的任务
      1. 由于Thread构造中接收不了Callable类型对象,因此需要一个中间桥梁对象 FutureTask,在它的构造中传入Callable接口的实现类对象,FutureTask的对象是Runable的子类,可以作为Thread构造的参数,这样让Callable实现类对象能够关联线程类对象
      1. 创建线程对象(Thread类对象),构造中传入FurureTask对象
      1. 调用 start() 方法,开启了一条线程
  • 注意事项

    • Callable线程执行完毕会有一个返回值,获取的方式是通过FutureTask对象调用get()方法得到,但需注意成get()方法在拿到返回值前会形成阻塞
  • 优点 :

    • 拓展性较强,还能继承其他类,任务执行完毕有返回值,出现异常可以捕获也可以抛出,相对灵活
  • 缺点 :

    • 不能直接使用Thread类功能,实现起来较为复杂

2 线程安全

2.1 线程安全产生的原因

  • 多个线程在对共享数据进行读改写的时候,可能导致的数据错乱就是线程的安全问题了

2.2 线程安全问题解决方式

线程安全问题解决方式主要有三种
2.2.1 同步代码块
同步代码块 : 锁住多条语句操作共享数据,可以使用同步代码块实现

第一部分 : 格式
synchronized(任意对象) {
多条语句操作共享数据的代码
} 第二部分 : 注意
1 默认情况锁是打开的,只要有一个线程进去执行代码了,锁就会关闭
2 当线程执行完出来了,锁才会自动打开 第三部分 : 同步的好处和弊端
好处 : 解决了多线程的数据安全问题
弊端 : 当线程很多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率
2.2.2 同步方法
同步方法:就是把synchronized关键字加到方法上

格式:修饰符 synchronized 返回值类型 方法名(方法参数) {    }

同步代码块和同步方法的区别:
1 同步代码块可以锁住指定代码,同步方法是锁住方法中所有代码
2 同步代码块可以指定锁对象,同步方法不能指定锁对象 注意 : 同步方法时不能指定锁对象的 , 但是有默认存在的锁对象的。
1 对于非static方法,同步锁就是this。
2 对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。 Class类型的对象
2.2.3 Lock锁
虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,
为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock Lock中提供了获得锁和释放锁的方法
void lock():获得锁
void unlock():释放锁 Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化
ReentrantLock的构造方法
ReentrantLock():创建一个ReentrantLock的实例 注意:多个线程使用相同的Lock锁对象,需要多线程操作数据的代码放在lock()和unLock()方法之间。一定要确保unlock最后能够调用

3 线程死锁

3.1 概述 :

  • 死锁是一种少见的,而且难于调试的错误,在两个线程对两个同步锁对象具有循环依赖时,就会大概率的出现死锁。我们要避免死锁的产生。否则一旦死锁,除了重启没有其他办法的

3.2 产生条件 :

  • 多个线程
  • 存在锁对象的循环依赖

3.3 代码实践

public class DeadLockDemo {
public static void main(String[] args) {
String 筷子A = "筷子A";
String 筷子B = "筷子B"; new Thread(new Runnable() {
@Override
public void run() {
while (true) {
synchronized (筷子A) {
System.out.println("小白拿到了筷子A ,等待筷子B....");
synchronized (筷子B) {
System.out.println("小白拿到了筷子A和筷子B , 开吃!!!!!");
}
}
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}, "小白").start(); new Thread(new Runnable() {
@Override
public void run() {
while (true) {
synchronized (筷子B) {
System.out.println("小黑拿到了筷子B ,等待筷子A....");
synchronized (筷子A) {
System.out.println("小黑拿到了筷子B和筷子A , 开吃!!!!!");
}
}
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}, "小黑").start();
}
}

4 线程的状态

在 java.lang.Thread.State 这个枚举中给出了六种线程状态
  1. 新建状态(NEW) 创建线程状态
  2. 就绪状态(RUNNABLE)start方法
  3. 阻塞状态(BLOCKED)无法获得锁对象
  4. 等待状态(WAITING) wait方法
  5. 计时等待(TIMED_WAITING)sleep方法
  6. 结束状态(TERMINATED)全部代码执行完毕

5 线程通信

  • 线程间的通讯技术就是通过等待和唤醒机制,来实现多个线程协同操作完成某一项任务,例如经典的生产者和消费者案例。等待唤醒机制其实就是让线程进入等待状态或者让线程从等待状态中唤醒,需要用到两种方法,如下:

  • 等待方法 :

    • void wait() 让线程进入无限等待。
    • void wait(long timeout) 让线程进入计时等待
    • 以上两个方法调用会导致当前线程释放掉锁资源。
  • 唤醒方法 :

    • void notify() 唤醒在此对象监视器(锁对象)上等待的单个线程。
    • void notifyAll() 唤醒在此对象监视器上等待的所有线程。
    • 以上两个方法调用不会导致当前线程释放掉锁资源
  • 注意

    • 等待和唤醒的方法,都要使用锁对象调用(需要在同步代码块中调用)
    • 等待和唤醒方法应该使用相同的锁对象调用
生产者和消费者案例
package com.itcast.waitnotify_demo2;

import sun.security.krb5.internal.crypto.Des;

/*
生产者步骤:
1,判断桌子上是否有汉堡包
如果有就等待,如果没有才生产。
2,把汉堡包放在桌子上。
3,叫醒等待的消费者开吃
*/
public class Cooker implements Runnable {
@Override
public void run() {
while (true) {
synchronized (Desk.lock) {
if (Desk.count == 0) {
break;
} else {
if (Desk.flag) {
// 桌子上有食物
try {
Desk.lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
// 桌子上没有食物
System.out.println("厨师生产了一个汉堡包...");
Desk.flag = true;
Desk.lock.notify();
}
}
}
}
}
}
package com.itcast.waitnotify_demo2;

import sun.security.krb5.internal.crypto.Des;

/*
消费者步骤:
1,判断桌子上是否有汉堡包。
2,如果没有就等待。
3,如果有就开吃
4,吃完之后,桌子上的汉堡包就没有了
叫醒等待的生产者继续生产
汉堡包的总数量减一
*/
public class Foodie implements Runnable {
@Override
public void run() {
while (true) {
synchronized (Desk.lock) {
if (Desk.count == 0) {
break;
} else {
if (Desk.flag) {
// 桌子上有食物
System.out.println("吃货吃了一个汉堡包...");
Desk.count--; // 汉堡包的数量减少一个
Desk.flag = false;// 桌子上的食物被吃掉 , 值为false
Desk.lock.notify();
} else {
// 桌子上没有食物
try {
Desk.lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
}
}
package com.itcast.waitnotify_demo2;

public class Test {
public static void main(String[] args) {
new Thread(new Foodie()).start();
new Thread(new Cooker()).start();
}
}

6 线程池

6.1 线程使用存在的问题

  • 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

    如果大量线程在执行,会涉及到线程间上下文的切换,会极大的消耗CPU运算资源

6.2 线程池的介绍

  • 其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。

6.3 线程池使用的大致流程

  • 创建线程池指定线程开启的数量
  • 提交任务给线程池,线程池中的线程就会获取任务,进行处理任务。
  • 线程处理完任务,不会销毁,而是返回到线程池中,等待下一个任务执行。
  • 如果线程池中的所有线程都被占用,提交的任务,只能等待线程池中的线程处理完当前任

6.4 线程池的好处

  • 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  • 提高响应速度。当任务到达时,任务可以不需要等待线程创建 , 就能立即执行。
  • 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存 (每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

6.5 Java提供好的线程池

  • java.util.concurrent.ExecutorService 是线程池接口类型。使用时我们不需自己实现,JDK已经帮我们实现好了
  • 获取线程池我们使用工具类java.util.concurrent.Executors的静态方
    • public static ExecutorService newFixedThreadPool (int num) : 指定线程池最大线程池数量获取线程池
  • 线程池ExecutorService的相关方法
    • Future submit(Callable task)
    • Future<?> submit(Runnable task)
  • 关闭线程池方法(一般不使用关闭方法,除非后期不用或者很长时间都不用,就可以关闭)
    • void shutdown() 启动一次顺序关闭,执行以前提交的任务,但不接受新任务

6.6 线程池处理Runnable任务

package com.itcast.threadpool_demo;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; /*
1 需求 :
使用线程池模拟游泳教练教学生游泳。
游泳馆(线程池)内有3名教练(线程)
游泳馆招收了5名学员学习游泳(任务)。 2 实现步骤:
创建线程池指定3个线程
定义学员类实现Runnable,
创建学员对象给线程池
*/
public class Test1 {
public static void main(String[] args) {
// 创建指定线程的线程池
ExecutorService threadPool = Executors.newFixedThreadPool(3); // 提交任务
threadPool.submit(new Student("小花"));
threadPool.submit(new Student("小红"));
threadPool.submit(new Student("小明"));
threadPool.submit(new Student("小亮"));
threadPool.submit(new Student("小白")); threadPool.shutdown();// 关闭线程池
}
} class Student implements Runnable {
private String name; public Student(String name) {
this.name = name;
} @Override
public void run() {
String coach = Thread.currentThread().getName();
System.out.println(coach + "正在教" + name + "游泳..."); try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(coach + "教" + name + "游泳完毕.");
}
}

6.7 线程池处理Callable任务

package com.itcast.threadpool_demo;

import java.util.concurrent.*;

/*
需求: Callable任务处理使用步骤
1 创建线程池
2 定义Callable任务
3 创建Callable任务,提交任务给线程池
4 获取执行结果 <T> Future<T> submit(Callable<T> task) : 提交Callable任务方法
返回值类型Future的作用就是为了获取任务执行的结果。
Future是一个接口,里面存在一个get方法用来获取值 练一练:使用线程池计算 从0~n的和,并将结果返回
*/
public class Test2 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 创建指定线程数量的线程池
ExecutorService threadPool = Executors.newFixedThreadPool(10); Future<Integer> future = threadPool.submit(new CalculateTask(100));
Integer sum = future.get();
System.out.println(sum);
}
} // 使用线程池计算 从0~n的和,并将结果返回
class CalculateTask implements Callable<Integer> {
private int num; public CalculateTask(int num) {
this.num = num;
} @Override
public Integer call() throws Exception {
int sum = 0;// 求和变量
for (int i = 0; i <= num; i++) {
sum += i;
}
return sum;
}
}

JavaSE_多线程入门 线程安全 死锁 状态 通讯 线程池的更多相关文章

  1. Java线程和多线程(九)——死锁

    Java中的死锁指的就是一种多于两个线程永远阻塞的特殊状况.Java中的死锁状态至少需要多于两个线程以及资源的时候才会产生.这里,我写了一个产生死锁的程序,并且讲下如何分析死锁. 首先来看一下产生死锁 ...

  2. Java线程状态、线程start方法源码、多线程、Java线程池、如何停止一个线程

    下面将依次介绍: 1. 线程状态.Java线程状态和线程池状态 2. start方法源码 3. 什么是线程池? 4. 线程池的工作原理和使用线程池的好处 5. ThreadPoolExecutor中的 ...

  3. 【Linux】多线程入门详解

    背景知识: 1.每次进程切换,都存在资源的保持和恢复动作,即上下文切换 2.进程的引入虽然可以解决多用户的问题,但是进程频繁切换的开销会严重影响系统性能 3.同一个进程内部有多个线程,这些线程共享的是 ...

  4. 从源码解读线程(Thread)和线程池(ThreadPoolExecutor)的状态

    线程是比进程更加轻量级的调度执行单位,理解线程是理解并发编程的不可或缺的一部分:而生产过程中不可能永远使用裸线程,需要线程池技术,线程池是管理和调度线程的资源池.因为前不久遇到了一个关于线程状态的问题 ...

  5. 【学习总结】【多线程】 安全隐患 & 通讯 & 线程的状态

    一.多线程的安全隐患 资源共享 1块资源可能会被多个线程共享,也就是多个线程可能会访问同一块资源 比如多个线程访问同一个对象.同一个变量.同一个文件 当多个线程访问同一块资源时,很容易引发数据错乱和数 ...

  6. java多线程(2)---生命周期、线程通讯

    java生命周期.线程通讯 一.生命周期 有关线程生命周期就要看下面这张图,围绕这张图讲解它的方法的含义,和不同方法间的区别.    1.yield()方法 yield()让当前正在运行的线程回到就绪 ...

  7. 多线程,线程类三种方式,线程调度,线程同步,死锁,线程间的通信,阻塞队列,wait和sleep区别?

    重难点梳理 知识点梳理 学习目标 1.能够知道什么是进程什么是线程(进程和线程的概述,多进程和多线程的意义) 2.能够掌握线程常见API的使用 3.能够理解什么是线程安全问题 4.能够知道什么是锁 5 ...

  8. [并发编程 - 多线程:信号量、死锁与递归锁、时间Event、定时器Timer、线程队列、GIL锁]

    [并发编程 - 多线程:信号量.死锁与递归锁.时间Event.定时器Timer.线程队列.GIL锁] 信号量 信号量Semaphore:管理一个内置的计数器 每当调用acquire()时内置计数器-1 ...

  9. 零基础学习java------day18------properties集合,多线程(线程和进程,多线程的实现,线程中的方法,线程的声明周期,线程安全问题,wait/notify.notifyAll,死锁,线程池),

    1.Properties集合 1.1 概述: Properties类表示了一个持久的属性集.Properties可保存在流中或从流中加载.属性列表中每个键及其对应值都是一个字符串 一个属性列表可包含另 ...

随机推荐

  1. Python爬虫报错:"HTTP Error 403: Forbidden"

    错误原因:主要是由于该网站禁止爬虫导致的,可以在请求加上头信息,伪装成浏览器访问User-Agent. 新增user-agent信息: headers = {'User-Agent':'Mozilla ...

  2. Servlet 3.0以上版本使用@WebServlet注解配置映射

    以前的Servlet都是在web.xml中进行配置,导致web.xml中各个Servlet的映射非常杂乱无章,后期也很难维护 本篇文章将详细阐述如何使用Servlet 3.0的新特性使用@WebSer ...

  3. 使用docker安装centos6.10镜像并安装新版gcc

    使用docker安装centos6.10镜像并安装新版gcc 环境:Linux Ubuntu 16.04.7 LTS 目录 使用docker安装centos6.10镜像并安装新版gcc 使用docke ...

  4. Java基础之浅谈接口

    前言 前几篇文章我们已经把Java的封装.继承.多态学习完了,现在我们开始比较便于我们实际操作的学习,虽然它也是Java基础部分,但是其实入门容易,精通很难. 我认真的给大家整理了一下这些必须学会.了 ...

  5. FreeRTOS学习记录--任务创建函数详解

    开局一张图.一步一步分析就好. (一)什么是任务? 在多任务系统中,我们按照功能不同,把整个系统分割成一个个独立的,且无法返回的函数,这个函数我们称为任务:任务包含几个属性:任务堆栈,任务函数.任务控 ...

  6. JAVASE Scanner

    package com.huang.boke.flowPath;import java.util.Scanner;public class test01 { public static void ma ...

  7. Mybatis-Dao层实现(通过代理方式)

    1.代理方式开发是主流 2.Mapper接口开发方法只需要编写Mapper接口(相当于Dao接口),然后由Mybatis根据接口创建动态代理对象 Mapper接口开发需要遵循以下规范 一一对应 Use ...

  8. redis5.0.0集群搭建【实战经历】

    redis集群搭建 作者:陈土锋 时间:2020年6月2日 目录 一.环境介绍... 1 1.机器准备... 1 2.关闭防护墙和selinux. 1 3.时间同步... 1 二.Redis Clus ...

  9. Java学习day39

    类加载的作用:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后在堆中生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口. 类 ...

  10. 【直播回顾】OpenHarmony知识赋能第四期直播——标准系统HDF开发

    3月10日晚上19点,OpenHarmony开发者成长计划社群内,我们举办了​​知识赋能第四期直播课<OpenHarmony标准系统HDF框架介绍>​​,吸引了数千名开发者线上观看学习,并 ...