Golang可重入锁的实现

项目中遇到了可重入锁的需求和实现,具体记录下。

什么是可重入锁

我们平时说的分布式锁,一般指的是在不同服务器上的多个线程中,只有一个线程能抢到一个锁,从而执行一个任务。而我们使用锁就是保证一个任务只能由一个线程来完成。所以我们一般是使用这样的三段式逻辑:

Lock();
DoJob();
Unlock();

但是由于我们的系统都是分布式的,这个锁一般不会只放在某个进程中,我们会借用第三方存储,比如 Redis 来做这种分布式锁。但是一旦借助了第三方存储,我们就必须面对这个问题:Unlock是否能保证一定运行呢?

这个问题,我们面对的除了程序的bug之外,还有网络的不稳定,进程被杀死,服务器被down机等。我们是无法保证Unlock一定被运行的。

那么我们就一般在Lock的时候为这个锁加一个超时时间作为兜底。

LockByExpire(duration);
DoJob();
Unlock();

这个超时时间是为了一旦出现异常情况导致Unlock没有被运行,这个锁在duration时间内也会被自动释放。这个在redis中我们一般就是使用set ex 来进行锁超时的设定。

但是有这个超时时间我们又遇上了问题,超时时间设置多久合适呢?当然要设置的比 DoJob 消耗的时间更长,否则的话,在任务还没结束的时候,锁就被释放了,还是有可能导致并发任务的存在。

但是实际上,同样由于网络超时问题,系统运行状况问题等,我们是无法准确知道DoJob这个函数要执行多久的。那么这时候怎么办呢?

有两个办法:

第一个方法,我们可以对DoJob做一个超时设置。让DoJob最多只能执行n秒,那么我的分布式锁的超时时长设置比n秒长就可以了。为一个任务设置超时时间在很多语言是可以做到的。比如golang 中的 TimeoutContext。

而第二种方法,就是我们先为锁设置一个比较小的超时时长,然后不断续期这个锁。对一个锁的不断需求,也可以理解为重新开始加锁,这种可以不断续期的锁,就叫做可重入锁。

除了主线程之外,可重入锁必然有一个另外的线程(或者携程)可以对这个锁进行续期,我们叫这个额外的程序叫做watchDog(看门狗)。

具体实现

在Golang中,语言级别天生支持协程,所以这种可重入锁就非常容易实现:

// DistributeLockRedis 基于redis的分布式可重入锁,自动续租
type DistributeLockRedis struct {
key string // 锁的key
expire int64 // 锁超时时间
status bool // 上锁成功标识
cancelFun context.CancelFunc // 用于取消自动续租携程
redis redis.Client // redis句柄
} // 创建可
func NewDistributeLockRedis(key string, expire int64) *DistributeLockRedis {
return &DistributeLockRedis{
key : key,
expire : expire,
}
} // TryLock 上锁
func (dl *DistributeLockRedis) TryLock() (err error) {
if err = dl.lock(); err != nil {
return err
}
ctx, cancelFun := context.WithCancel(context.Background())
dl.cancelFun = cancelFun
dl.startWatchDog(ctx) // 创建守护协程,自动对锁进行续期
dl.status = true
return nil
} // competition 竞争锁
func (dl *DistributeLockRedis) lock() error {
if res, err := redis.String(dl.redis.Do(context.Background(), "SET", dl.key, 1, "NX", "EX", dl.expire)); err != nil {
return err
}
return nil
} // guard 创建守护协程,自动续期
func (dl *DistributeLockRedis) startWatchDog(ctx context.Context) {
safeGo(func() error {
for {
select {
// Unlock通知结束
case <-ctx.Done():
return nil
default:
// 否则只要开始了,就自动重入(续租锁)
if dl.status {
if res, err := redis.Int(dl.redis.Do(context.Background(), "EXPIRE", dl.key, dl.expire)); err != nil {
return nil
}
// 续租时间为 expire/2 秒
time.Sleep(time.Duration(dl.expire/2) * time.Second)
}
}
}
})
} // Unlock 释放锁
func (dl *DistributeLockRedis) Unlock() (err error) {
// 这个重入锁必须取消,放在第一个地方执行
if dl.cancelFun != nil {
dl.cancelFun() // 释放成功,取消重入锁
}
var res int
if dl.status {
if res, err = redis.Int(dl.redis.Do(context.Background(), "Del", dl.key)); err != nil {
return fmt.Errorf("释放锁失败")
}
if res == 1 {
dl.status = false
return nil
}
}
return fmt.Errorf("释放锁失败")
}

这段代码的逻辑基本上都以注释的形式来写了。其中主要就在startWatchDog,对锁进行重新续期

ctx, cancelFun := context.WithCancel(context.Background())
dl.cancelFun = cancelFun
dl.startWatchDog(ctx) // 创建守护协程,自动对锁进行续期
dl.status = true

首先创建一个cancelContext,它的context函数cancelFunc是给Unlock进行调用的。然后启动一个goroutine进程来循环续期。

这个新启动的goroutine在主goroutine处理结束,调用Unlock的时候,才会结束,否则会在 过期时间/2 的时候,调用一次redis的expire命令来进行续期。

至于外部,在使用的时候如下

func Foo() error {
key := foo // 创建可重入的分布式锁
dl := NewDistributeLockRedis(key, 10)
// 争抢锁
err := dl.TryLock()
if err != nil {
// 没有抢到锁
return err
} // 抢到锁的记得释放锁
defer func() {
dl.Unlock()
} // 做真正的任务
DoJob()
}

参考文章

如果还想了解更多,以下的参考文章值得阅读。

redisson

https://github.com/redisson/redisson

滴滴 曾奇:谈谈我所认识的分布式锁

http://blog.itpub.net/69908606/viewspace-2644366/

Redis 分布式锁|从青铜到钻石的五种演进方案

https://my.oschina.net/u/4499317/blog/5039486

分布式锁中的王者方案 - Redisson

https://xie.infoq.cn/article/d8e897f768eb1a358a0fd6300#:~:text=Redisson 是一个在Redis,In-Memory Data Grid)。

redisson中的看门狗机制总结

https://www.cnblogs.com/jelly12345/p/14699492.html

Redis分布式锁如何自动续期

https://blog.csdn.net/yangbindxj/article/details/123189395

到底什么是重入锁,拜托,一次搞清楚!

https://zhuanlan.zhihu.com/p/71018541

Golang可重入锁的实现的更多相关文章

  1. Android 死锁和重入锁

    死锁的定义: 1.一般的死锁 一般的死锁是指多个线程的执行必须同时拥有多个资源,由于不同的线程需要的资源被不同的线程占用,最终导致僵持的状态,这就是一般死锁的定义. package com.cxt.t ...

  2. 可重入锁 公平锁 读写锁、CLH队列、CLH队列锁、自旋锁、排队自旋锁、MCS锁、CLH锁

    1.可重入锁 如果锁具备可重入性,则称作为可重入锁. ========================================== (转)可重入和不可重入 2011-10-04 21:38 这 ...

  3. java ReentrantLock可重入锁功能

    1.可重入锁是可以中断的,如果发生了死锁,可以中断程序 //如下程序出现死锁,不去kill jvm无法解决死锁 public class Uninterruptible { public static ...

  4. synchronized关键字,Lock接口以及可重入锁ReentrantLock

    多线程环境下,必须考虑线程同步的问题,这是因为多个线程同时访问变量或者资源时会有线程争用,比如A线程读取了一个变量,B线程也读取了这个变量,然后他们同时对这个变量做了修改,写回到内存中,由于是同时做修 ...

  5. 可重入锁 & 自旋锁 & Java里的AtomicReference和CAS操作 & Linux mutex不可重入

    之前还是写过蛮多的关于锁的文章的: http://www.cnblogs.com/charlesblc/p/5994162.html <[转载]Java中的锁机制 synchronized &a ...

  6. Java并发编程-可重入锁

    可重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍可以获取该锁而不受影响.在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁. publ ...

  7. Java中可重入锁ReentrantLock原理剖析

    本文由码农网 – 吴极心原创,转载请看清文末的转载要求,欢迎参与我们的付费投稿计划! 一. 概述 本文首先介绍Lock接口.ReentrantLock的类层次结构以及锁功能模板类AbstractQue ...

  8. ReentrantLock(重入锁)以及公平性

    ReentrantLock(重入锁)以及公平性 标签(空格分隔): java NIO 如果在绝对时间上,先对锁进行获取的请求一定被先满足,那么这个锁是公平的,反之,是不公平的,也就是说等待时间最长的线 ...

  9. 可重入锁(good)

    可重入锁,也叫做递归锁,是指在一个线程中可以多次获取同一把锁,比如:一个线程在执行一个带锁的方法,该方法中又调用了另一个需要相同锁的方法,则该线程可以直接执行调用的方法[即可重入],而无需重新获得锁: ...

随机推荐

  1. DOM 小总结

    DOM 是什么 文档对象模型,是针对 HTML 和 XML 文档的一个 API (应用程序编程接口), 描绘了一个层次化的节点树. D: document 当 web 浏览器浏览一个页面的时候,DOM ...

  2. 《深入理解ES6》笔记—— JavaScript中的类class(9)

    ES5中的近类结构 ES5以及之前的版本,没有类的概念,但是聪明的JavaScript开发者,为了实现面向对象,创建了特殊的近类结构. ES5中创建类的方法:新建一个构造函数,定义一个方法并且赋值给构 ...

  3. 深入理解ES6之《块级作用域绑定》

    众所周知,js中的var声明存在变量提升机制,因此ESMAScript 6引用了块级作用域来强化对变量生命周期的控制let const 声明不会被提升,有几个需要注意的点1.不能被重复声明 假设作用域 ...

  4. java中内部类中还有内部类请给实例!

    2.当内部类中还有一个内部类,下面给出了一个实例.[新手可忽略不影响继续学习](以下多出代码, 用蓝色标记)例2.2:class ShellMark_to_win {    int shell_x = ...

  5. java中的方法(method)到底怎么用?给个例子

    7.方法(method)   被调例子, int add(int x, int y){ return x+y; } 主调例子, for example: int result = add(5,3); ...

  6. 时间篇之centos7修复ntpq: read: Connection refused

    关于ntp同步时间, 由于是解决问题,所以理论性内容不多. 关于UTC NTP要提供准确的时间,就必须有准确的时间来源,那可以用格林尼治时间吗?答案是否定的. 因为格林尼治时间是以地球自转为基础的时间 ...

  7. Nuxt.js(二、解决首屏速度与SEO)

    Nuxt.js(二.解决首屏速度与SEO) 1.普通的Vue SPA初始化加载速度很慢 在传统的web应用中,当用户请求一个页面时,服务器直接返回一个html文件,浏览器直接渲染出来.但是,在vue应 ...

  8. 2021.08.09 P6037 Ryoku的探索(基环树)

    2021.08.09 P6037 Ryoku的探索(基环树) P6037 Ryoku 的探索 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.树的性质 2.基环树的性质 ...

  9. Python中的Super详解

    这篇文章我们来介绍一下 super,我相信大部分的人使用 super 都是使用这种方式: # 就是我有一个 class 比如说是 Male,然后继承另外一个 class 比如是 Person,然后我在 ...

  10. 数据建模软件Chiner,颜值与实用性并存

    目录 一.chiner介绍 二.值得关注的功能点 2.1. 兼容各种格式的数据建模文件 2.2. 支持多数据库.代码生成 2.3. 支持逻辑视图与物理视图设计 2.4. 自动生成数据库文档 三.总结 ...