今天给大家带来的这篇文章是关于机器学习的,机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化;我们使用线性代数来处理计算过程;我们还用概率论与统计学建模不确定性。

在这其中,概率论有其独特的地位,模型的预测结果、学习过程、学习目标都可以通过概率的角度来理解。

与此同时,从更细的角度来说,随机变量的概率分布也是我们必须理解的内容。在这篇文章中,项目作者介绍了所有你需要了解的统计分布,他还提供了每一种分布的实现代码。

学习资料!(https://jq.qq.com/?_wv=1027&k=zLK3I0M5)


项目地址:https://github.com/graykode/dis

下面让我们先看看总体上概率分布都有什么吧:

非常有意思的是,上图每一种分布都是有联系的。比如说伯努利分布,它重复几次就是二项分布,如果再扩展到多类别,就成为 了多项式分布。注意,其中共轭(conjugate)表示的是互为共轭的概率分布;Multi-Class 表示随机变量多于 2 个;N Times 表示 我们还会考虑先验分布 P(X)。

在贝叶斯概念理论中,如果后验分布 p(θ | x) 与先验分布 p(θ) 是相同的概率分布族,那么后验分布可以称为共轭分布,先验分布

可以称为似然函数的共轭先验。

为了学习概率分布,项目作者建议我们查看 Bishop 的模式识别与机器学习。当然,你要是准备再过一遍《概率论与数理统计》,

那也是极好的。

概率分布与特性

  1. 均匀分布(连续型)

均匀分布是指闭区间 [a, b] 内的随机变量,且每一个变量出现的概率是相同的。


2. 伯努利分布(离散型)

伯努利分布并不考虑先验概率 P(X),它是单个二值随机变量的分布。它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的

概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。

3. 二项分布(离散型)

二项分布是由伯努利提出的概念,指的是重复 n 次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与

否互相对立。

4.Multi-Bernoulli 分布(离散型)

Multi-Bernoulli 分布又称为范畴分布(Categorical distribution),它的类别超过 2,交叉熵的形式与该分布的负对数形式是一致的。

5. 多项式分布(离散型)

范畴分布是多项式分布(Multinomial distribution)的一个特例,它与范畴分布的关系就像伯努利分布与二项分布之间的关系。

6.Beta 分布(连续型)

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,它指一组定义在 (0,1) 区间的连续

概率分布。均匀分布是 Beta 分布的一个特例,即在 alpha=1、 beta=1 的分布。

7. 狄利克雷分布(连续型)

狄利克雷分布(Dirichlet distribution)是一类在实数域以正单纯形(standard simplex)为支撑集(support)的高维连续概率分布,是 Beta 分布在高维情形的推广。在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。

8.Gamma 分布(连续型)

Gamma 分布是统计学中的常见连续型分布,指数分布、卡方分布和 Erlang 分布都是它的特例。如果 Gamma(a,1) / Gamma(a,1)

Gamma(b,1),那么 Gamma 分布就等价于 Beta(a, b) 分布。

  1. 指数分布(连续型)

指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔等等。当alpha 等于 1 时,指数分布就是 Gamma 分布的特例。

10. 高斯分布(连续型)

高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。

当正态分布的均值为 0、方差为 1 的时候,它就是标准正态分布,这也是我们最常用的分布。

  1. 卡方分布(连续型)

简单而言,卡方分布(Chi-squared)可以理解为,k 个独立的标准正态分布变量的平方和服从自由度为 k 的卡方分布。卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。



12. 学生 t-分布

学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。t 分布也是对称的倒钟型分布,就如同正态分布一样,但它的长尾占比更多,这意味着 t 分布更容易产生远离均值的样本。


分布的代码实现

上面多种分布的 NumPy 构建方式以及制图方式都提供了对应的代码,读者可在原项目中查阅。如下所示展示了指数分布的构建
的制图方式,我们可以直接定义概率密度函数,再打印出来就好了。

  1. import numpy as np from matplotlib import pyplot as plt def exponential(x, lamb): y = lamb * np.exp(-lamb * x) return x, y, np.mean(y), np.std(y) for lamb in [0.5, 1, 1.5]: x = np.arange(0, 20, 0.01, dtype=np.float) x, y, u, s = exponential(x, lamb=lamb) plt.plot(x, y, label=r'$mu=%.2f, sigma=%.2f,' r' lambda=%d$' % (u, s, lamb)) plt.legend() plt.savefig('graph/exponential.png') plt.show()

最后

今天给大家分享的Python小技巧到这里就结束了,对于文章有不懂的地方可以评论留言告诉我,喜欢的记得点赞收藏哟!!!

Python实现12种概率分布(附代码)的更多相关文章

  1. 用Python实现BP神经网络(附代码)

    用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络. BP神经网络 全部代码 https://github.com/lawl ...

  2. 小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码)

    小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码) Python 被称为是最接近 AI 的语言.最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用P ...

  3. python德国信用评分卡建模(附代码AAA推荐)

    欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 python信用评分卡建模视频系列教程(附代码)  博主录制 https://study.163.com/course/i ...

  4. Python 爬虫的工具列表 附Github代码下载链接

    Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...

  5. 数据科学中的常见的6种概率分布(Python实现)

    作者:Pier Paolo Ippolito@南安普敦大学 编译:机器学习算法与Python实战(微信公众号:tjxj666) 原文:https://towardsdatascience.com/pr ...

  6. 分享5种风格的 jQuery 分页效果【附代码】

    jPaginate 是一款非常精致的分页插件,提供了五种不同风格的分页效果,支持鼠标悬停翻页,快速分页功能.这款插件还提供了丰富的配置选项,你可以根据需要进行设置. 效果演示      源码下载 各个 ...

  7. Python进阶:函数式编程实例(附代码)

    Python进阶:函数式编程实例(附代码) 上篇文章"几个小例子告诉你, 一行Python代码能干哪些事 -- 知乎专栏"中用到了一些列表解析.生成器.map.filter.lam ...

  8. 【转载】Python编程中常用的12种基础知识总结

    Python编程中常用的12种基础知识总结:正则表达式替换,遍历目录方法,列表按列排序.去重,字典排序,字典.列表.字符串互转,时间对象操作,命令行参数解析(getopt),print 格式化输出,进 ...

  9. Python编程中常用的12种基础知识总结

    原地址:http://blog.jobbole.com/48541/ Python编程中常用的12种基础知识总结:正则表达式替换,遍历目录方法,列表按列排序.去重,字典排序,字典.列表.字符串互转,时 ...

随机推荐

  1. Python学习笔记: 用pprint更漂亮的打印数据

    pprint是一个标准库,它提供了pprint()函数 ,用来打印复杂数据时更漂亮 >>> from pprint import pprint >>> data = ...

  2. Day 004:PAT练习--1033 旧键盘打字 (20 分)

    题目要求如下:   我一开始理解的题意:第一行给出的是坏掉的键,这里的规则应该是这样的:   1."对应英文字母的坏键以大写给出",若有字母,则与其相关的字母全部不能输出,不论是大 ...

  3. 【Java分享客栈】我曾经的两个Java老师一个找不到工作了一个被迫转行了

    前言 写这篇文章的初衷主要是最近发生了两件事,让我感慨良多,觉得踏入这个行业的初始,有些事情就应该长远考虑,这样对职业发展才更有利,仅仅停留在技术的追求上固然能壮大自身,可逆水行舟的程序员们终究会面临 ...

  4. go-websocket服务端/客户端

    目录 websocket 服务端 客户端 websocket websocket.Upgrader升级为websocket协议 服务端 package main import ( "fmt& ...

  5. Linux应急响应入门——入侵排查

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 账号安全: 1.用户信息文件 /etc/passwd # ...

  6. http缓存策略以及强缓存和协商缓存浅析

    http缓存策略以及强缓存和协商缓存浅析 本地缓存-强缓存 本地缓存,也就是我们常说的强缓存:是指当浏览器请求资源时,如果请求服务端的资源命中了浏览器本地的缓存资源,那么浏览器就不会发送真正请求给服务 ...

  7. redis 2 主从和哨兵

    主从: 概念:将一台redis服务器数据复制到其他redis服务器,前者是master,后者是slave.数据复制是单向,从主节点复制到从节点.master以写为主,slave以读为主一个zhu主节点 ...

  8. Java中的线程到底有哪些安全策略

    摘要:Java中的线程到底有哪些安全策略呢?本文就为你彻底分析下! 本文分享自华为云社区<[高并发]线程安全策略>,作者:冰 河 . 一.不可变对象 不可变对象需要满足的条件 (1)对象创 ...

  9. VS.NET启动显示ID为XXXX的进程当前未运行

    解决办法:在启动项目根目录下用文本编辑器打开Web项目下的{X}.csproj文件,然后查找 <WebProjectProperties>,将这一对标签之间的内容全部删除,然后再打开项目就 ...

  10. mybatis 转义符号

    < <= > >= & ' " < <= > >= & &apos; "