操作好像比较神秘。

发现 \(k\) 很小,考虑和 \(k\) 有关的 DP,考虑不出来。

费用提前计算,对 \(w_i\) 做后缀和,那么序列的权值就是 \(\sum_{i=1}^nyw_i\)。

考虑 DP,明显有 \(dp[n][x]=\max_{i=-k}^kdp[n-1][x+i]+i\times w_n\)。

注意到这个形式有点像 \((\max,+)\) 卷积,很容易发现右边的东西是一个一次函数。

一次函数一定是一个凸包,所以 DP 数组一定也是一个凸包。

我们需要计算的就是两个凸包的闵可夫斯基和。闵可夫斯基和是将两个凸包的点按照斜率归并起来。

注意到一次函数的斜率都相同,在归并的时候可以视作将一段连续的点插入凸包。

然后因为 \(b_i\leq a_i\),每次操作结束后需要删掉一个后缀。

上述操作使用平衡树可以做到 \(O(n\log n)\),可以通过。

LGP5653口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. linux sftp

    转载请注明来源:https://www.cnblogs.com/hookjc/ sftp用法 1. 用sftp如何登录服务器 sftp 是一个交互式文件传输程式.它类似于 ftp, 但它进行加密传输, ...

  2. 深入分析Java中的关键字static

    在平时开发当中,我们经常会遇见static关键字.这篇文章就把java中static关键字的使用方法的原理进行一个深入的分析.先给出这篇文章的大致脉络: 首先,描述了static关键字去修饰java类 ...

  3. Java线程--CompletionService使用

    原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11871911.html Java线程--CompletionService使用 public ...

  4. docker 网络概述及网络模式详解

    docker 网络概述及网络模式详解 1.网络概述 2.网络模式详解 1.网络概述: Docker 网络实现原理 Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0) ...

  5. spring5+Struts2+hibernate5

    一,加jar包 加入顺序,个人推荐,spring->struts2->hibernate spring的jar包:基本包共21个+用到的aspectj注解的包2个+日志包1个 ------ ...

  6. Docker名词解释

    http://www.runoob.com/docker/docker-architecture.html  

  7. [GWCTF 2019]re3 wp

    [GWCTF 2019]re3 关键点:AES MD5 动态调试 smc自解密 gdb使用 跟进main函数 发现一个典型smc异或自解密 可以用idc脚本 或者python patch 或者动态调试 ...

  8. 1、Linux基础--相关软件安装与网络配置

    1.虚拟机(VM安装) 2.网络配置 3.Linux操作系统安装 4.xshell安装

  9. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  10. .NET 云原生架构师训练营(权限系统 代码实现 Identity)--学习笔记

    目录 开发任务 代码实现 开发任务 DotNetNB.Security.Core:定义 core,models,Istore:实现 default memory store DotNetNB.Secu ...