LGP5653口胡
操作好像比较神秘。
发现 \(k\) 很小,考虑和 \(k\) 有关的 DP,考虑不出来。
费用提前计算,对 \(w_i\) 做后缀和,那么序列的权值就是 \(\sum_{i=1}^nyw_i\)。
考虑 DP,明显有 \(dp[n][x]=\max_{i=-k}^kdp[n-1][x+i]+i\times w_n\)。
注意到这个形式有点像 \((\max,+)\) 卷积,很容易发现右边的东西是一个一次函数。
一次函数一定是一个凸包,所以 DP 数组一定也是一个凸包。
我们需要计算的就是两个凸包的闵可夫斯基和。闵可夫斯基和是将两个凸包的点按照斜率归并起来。
注意到一次函数的斜率都相同,在归并的时候可以视作将一段连续的点插入凸包。
然后因为 \(b_i\leq a_i\),每次操作结束后需要删掉一个后缀。
上述操作使用平衡树可以做到 \(O(n\log n)\),可以通过。
LGP5653口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
随机推荐
- linux sftp
转载请注明来源:https://www.cnblogs.com/hookjc/ sftp用法 1. 用sftp如何登录服务器 sftp 是一个交互式文件传输程式.它类似于 ftp, 但它进行加密传输, ...
- 深入分析Java中的关键字static
在平时开发当中,我们经常会遇见static关键字.这篇文章就把java中static关键字的使用方法的原理进行一个深入的分析.先给出这篇文章的大致脉络: 首先,描述了static关键字去修饰java类 ...
- Java线程--CompletionService使用
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11871911.html Java线程--CompletionService使用 public ...
- docker 网络概述及网络模式详解
docker 网络概述及网络模式详解 1.网络概述 2.网络模式详解 1.网络概述: Docker 网络实现原理 Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0) ...
- spring5+Struts2+hibernate5
一,加jar包 加入顺序,个人推荐,spring->struts2->hibernate spring的jar包:基本包共21个+用到的aspectj注解的包2个+日志包1个 ------ ...
- Docker名词解释
http://www.runoob.com/docker/docker-architecture.html
- [GWCTF 2019]re3 wp
[GWCTF 2019]re3 关键点:AES MD5 动态调试 smc自解密 gdb使用 跟进main函数 发现一个典型smc异或自解密 可以用idc脚本 或者python patch 或者动态调试 ...
- 1、Linux基础--相关软件安装与网络配置
1.虚拟机(VM安装) 2.网络配置 3.Linux操作系统安装 4.xshell安装
- Solution -「Gym 102979E」Expected Distance
\(\mathcal{Description}\) Link. 用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...
- .NET 云原生架构师训练营(权限系统 代码实现 Identity)--学习笔记
目录 开发任务 代码实现 开发任务 DotNetNB.Security.Core:定义 core,models,Istore:实现 default memory store DotNetNB.Secu ...