汇编语言-求X的阶乘
1. 题目:求X的阶乘值
2. 要求:输入一个整型数(不超过10),求出其阶乘值后输出,求阶乘的算法用子程序来实现。
3. 提示:可以用递归来实现,也可以用简单的循环来实现。
这里使用循环来实现:
对于汇编新手,最好通过高级语言的编程测试,然后再写汇编代码,这样效果会好一些、
求阶乘的C++代码如下:
//The program is to find the factorial from to
//author:Karllen
//Date: // #include <iostream> int factorial(int n); int main()
{
int n;
std::cin>>n;
std::cout<<factorial(n)<<std::endl; system("pause");
return ;
} int factorial(int n)
{
int sum = ;
while (n!=)
{
sum*=n;
--n;
}
return sum;
}
汇编代码如下:
; Example assembly language program -- adds two numbers
; Author: Karllen
; Date: revised 05/2014 .
.MODEL FLAT ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD INCLUDE io.h ; header file for input/output cr EQU 0dh ; carriage return character
Lf EQU 0ah ; line feed .STACK ; reserve 4096-byte stack .DATA ; reserve storage for data
prompt BYTE "The program is to find the factorial from 1 to 10",cr,Lf,
numInput BYTE "Please enter a number from 1 to 10",cr,Lf,
answer BYTE "The number factorial is"
value BYTE DUP(?)
BYTE cr,Lf, PUBLIC _start
.CODE
_start:
; start of main program code
output prompt doInput:
output numInput
input value,
atod value
cmp eax,
jl doInput
cmp eax,
jg doInput
push eax
call findFactorial
add esp, dtoa value,eax
output answer INVOKE ExitProcess, ; exit with return code 0
; make entry point public findFactorial PROC NEAR32
push ebp
mov ebp,esp mov eax,[ebp+]
mov ebx,eax
cmp eax,
je endFindWhile
doFindWhile:
dec ebx
cmp ebx,
je endFindWhile
mul ebx
jmp doFindWhile
endFindWhile:
pop ebp
ret
findFactorial ENDP
END ; end of source code
测试结果:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfkAAAGECAIAAAC6aM6sAAAgAElEQVR4nO2d+Xfbxrn38Q++Sd/3XJ3zruf29jZt6jZtlqZZ3PamTtwmTc2sTdqkcRZb3uLYcWI6lm1J1GatNrVR1EKtJEFSFEVqXznP+wNFCgQwgxmQkijo+zlzfMDBg2cZYL6AQYDSckQ5oqyhLRItEmWKbYFoobhcWJUrtiVDW3bbVo55c124Y1s6lJY7+Ja1O8AWLUcaGhqa67bo1LSFopqbWtqulfwWbIyOjJNZMM8PQVkOSKFqpDnu0Upa1Y8/2yNqvthShpZEQ0NTbCmVps1Lm84bWmHSLhhmNU/3Pd+ORFt5Z+gaaWmhshcO00Sx6cUWR0NDU2m6StMShlknaNaTiVX3jXd7ZP5PUYPtqP7/VbmkVrHNV6/Z6rtR2WNEMaJosc2hoaFJtKh6K9P6d97/WKmZhD5TrvUZogxjlbcWn6b5grL2QZ+m+VqqEbeStqDY0q7a/GE0/XKd9oRfV97QoPVJg9bzhL50EM+ioaHJNaXTg2a8yH/n/Y+HxmZ47elX3jP+W9B6q9xnqP8NrYSvlbHFvRY8q2lng6WPrNWnaXX+cPHjiL9O0+qu6kbVrruqH43WLzAW8tdpdf6QunAfiNAHfaUhDexLavD1/ZEOutflamt9qtA4F/U8oS8cvjNoaGiKTebEYNb6nr5Hks14Xb+v9Yk7T2rak3cSBcVcDPo0X7Ak7mF/nfHjYtBXOBnsX79r2hvBvY8j/jqtzj+iKtPVvK4PvmE897i9qBefM+Qu4YOv1/lDjKWZfrlO03zB9N5y3WWdpRlL6/4nNe31IEsHfdqeZbX+Z+Dy/GGUe9sbODyth9yjoblralqvSWO9h7NAiat1BqG3Nt3/I63umm78WBL34Bta3ZN1pUt4/WqdyuX8gWi94n8pOGrO03p3921K3sr79ct12pN+Pc2CrxdEv2r3f9z/X8Ek94Kb9dB6NLRqtcPQ+kzizpNa3dUEWbS+dPdGv1an/civF/sNH4M+rc4fLvxbfsOn1acV/jcQ9tdpdf5r+zczgkb/Boo3jvbvexSNi/+T2PNmXK7zjxROMAUK/6UwnTl0/5PF9U/69RafVvqfx0LxxLBgtTF8XGBswZDVG8H9k8GVve66KzorbVXYxE7TLRf+RYkP+EoX/nstsB/QF9jTbv/rxTKH928E1V3W92R62F8aCE3TrFpvunfEmn2apvmai+cGrc4/zFiKBc/sm/ULbuPM4TYOGlpVm43Wm76bLUxMIiIi42w3fdRstb7fp2m+FiLLRb3hTv2+mu+LbLh0e6d04W8Q5TKt1wznhr3/IgTPlqSc6dfqilq/b7Bn8yO/bjrraOVnoFIyhdxK/70o/s9Dv1qnPenXM+XSX9DrBd3/pFZ3Rdev1BU1vdhKN6OKQu9rKV8O+etKsl5Q+cJyyF9Xbrx/ejC1wlln778Ouv/J0lZMv1Knlf8/QL9ctyfr6T3JLizv3x0K+euKnXvfE5SfXYz/dSgtF09CQV/hG4XSqnmiFPWf0bQz/Q53cqwX+GhoaBU27nezRlkvLBj/ldD6vet6mxs4tt/Q6v4fab5Wpl+r25fds8GyO/um6/qwyY/hrGC8ci9tZTqp7PUX4u59nVC8L793SV52j37EcAemIMp7H/NsIc9azmnaueBCnoX8dZovaLax3MMxXuaXruLLbvIUTwDFu/BFzS1T6oKYGu7qlPUYrv2LHnj3ZJp9exfme9fydf5h800byz2coLmGvbW6/wnjfw6sZncS+HoWDe1I2qxY603X9aZ+u2cu+9/QhPfry7W7dCV+Nhg8a7yd4gu2+vbPB6Wb5uXf1gbfKNzrN91mKX403Wrf3zbo0zTftb1zSfANzdcS9JV9Cbyn+Hs+ixfsbGGXLeywhW0WulWnaZr212B6k6V7fJrmC2wGX9e01/tYeoeld1g6X1T8kvobtd4XNN2yN96CX9i/LrbVenNnwKdZb9+XHM7r/icOROsLt2uY3Y0do9b7mjhfz+IeDhraITfN+BaW4Lreeg6wfb4+fMdwm4WxbNCn+YLZ8mv5TPEmQ+n7zyfryu9y1NXtyWu5PpZ/LVm6exB8Y/8mg+GyN+jTym81FG+tBAuPhL4RLH4DvH/PxLd3RV/Sd8YWGAuc0568pac39Mtv+odX2PwyG75ep/3IP5xj8zn98o+0J35Up/13/9AKS63pl9/yD2+x9M5+tsa054tZ7V0I+4IGkS2XSMZSuv8Jre6SzlJB3xN+vfBVZ5NPKxk0+TStzj9U/Ba0JLtpFnx9T3P3757PM9bs8zU7a33hZn1RzYO+4pV78Z5MQdP3ttIv1+3fpn/Crxu2DZ7RNM0XTBGlKFFf52vEd7NoaEfXtJhhygnu1xulv7Bg0vrSi7LZxJ0f7d+i8I8xZtb6spvge3eiC2K9f3lY0j6DHhXEqChtwTOadibIUoylDLcLzvj2tXLI8AXjE0X/xe8qfYH92zJ7sp4ungZK6p/Os/QOS/f4tP/hH86x1P4tmH+7NLCTSuykEjtDF/9N07Qn6uOpeZbKsFRryWbv6rt4c0Mr6LUhK18jY0nGBv11Wp1/kLEkY8mgr9CfYCyh+5/Q6up1lmSs0fD9amGrhN29lFRR95t8JUEvnP+0omQ7a71xE63O93qdSev3Kyqet4xnlL3lob1zVXG/9OOZSzS0o2ya8X/QLp7DmS/X+mzx9y9zRDnGjC1r+M5zxHipW3w+L5lniV2mc9reqh2m7zB9m8XL215/0SC+w+LbLL5j6N9liV2WZPvNeCE8X3ZRXLy7ssvmt9n8BptfDp7RtDON+WR0Izm7npxZTU4tJSO5ZCSbjGST35/VtLONU8uJmbVEdDMZ30mmWTLHUmsstc2SuyyZZ0nGEozpjOmMxfIstmvX8iyeZzFTY/stXt6MnQXPCUN1yeL/D1w8K1l5c/EuFYQeDe1AmzZDNE00TTTFlLU+VdR6k9Dv/yovY0vlWm98Temyvifx+i6Lb7PoFpvbYLPrZW2u0DbY3CabW2ez62xmjU2Xt5liK6ydsa5aZ7ObbG6TxbZYbJvFdlm8cObI70lwoiiU+zdD8mx+m6U2WGqFJTNs8OK/aX/oSoxnEqPpxEgqMZxIDMYSg7HEwL3XNO2/ffhYH07o4bQ+vqhHlvXoVmKeJXIsucH0TaZv7wWd22azW2x6k01tsElDm9pg0xtsetPQNthUoRk7twzN0D+zzWa32dwOi+b31F9nLMH0+rri/3uOpAl/CQcX9Whoh9y0yTxFdmlim8a3lH8PJ2nR+qXy33ZfLf7Ce+kngks/9ZUmShHpeYpv09wmzazT1ApN5Ghscb+NL9J4liayFMlRZJkiORrP0liWxjJ7bTRDo5micZYmsjSeLdos0lh2r41nKbJEkRWaWqXpdZpZp9lNmtuiuS2KblN0h6I7FNuleJ50RklGSaLkLiU3KLlKqRwlkyw5u54YW9QH44n+aOLxbKJvOtE72ficpmma9uxtvTui903rwWh8UI+H5uOR5XhsJ54mfZliqzS3SjNrNLVOkVUaW6ZwlkIZCmVopNAWaSRL4SyNLtHYMo0uUThH4exeZzi31wprx5ZpbKW4sLzXOb5KkTWKrNPUFs3uUJTtXTgn1H/1tLrN9vcsxUIPrUdDO6CmjW1QeJ1GVim0QkNLFFyg3gR1zrH2qe22qa1Ca5/a7o7To3kaylF4jSY2aWaXYkSJ4g9eFn7LPlf82yOrlF+l3VXaWaXtFdpZJpYr/vzvglHoGUW3aWadJpdpPEuhNA0mdoPRzVLrj24OxLcH9Z2hRH44xQYTuwP6djC2FYxulLfN/vjWQHxnQN8Z0Hf69Z3++HYwttUf3y70DOq7Q0kWStPIAo1maTRL40s0sUwTKxRZpck1mlqjqQ2a3aS5bYrtks5I3yJ9jfQcJRZIj+7oE0v6UFLvmdK7I3rXhP5wLNERTnSEE+1hvdAejuvdk/G+mdjjaGxkITq1FtVZdJFmFimSodEMhTI0OE/BBPVFd7pnN7pnN3tmN3vmtnqj233R3b44e6xTMEGPdeqLs77Ybm90pze60xfL98VZn84eJyiYpGCK+uepf56CKQomKZik/hQNLtBQhkJZGl2hiQ2a2qFZRlGiGJFu+Y3Sw2xWlXf8vbMjnw9oaF5t2tASDeZoYJGCC/Ronrpi1Da11TS63DC00DCYvjuQvjsw3zCQbh5b6ZjZ7k3Q4CKNrNDEJs3kKU5UuLQvXNcX7t6s0u4aba7R5hptrNL6Cq0v03aO8oWL+nRR6BNE0W2aXqfxZRrJ0EAi3ze73hlZagvPt4fT7eF0WzjdPpp+OL7YGcl1Ty33TK92Ty53RnIPxxfbxzLtY5n2sYX20YX20YWOscWHE9nOSK5rcrlzcqkzkuucyHVOZB9O5DojS52Ty12Tyz0za72zm49i20E9P5DIDyRpMEVDaRpeoFCGRrIUztH4Mk2u0/QmRXcouk6xJYplSE+QPrMRH1mMP47GO8bi7aN6WzjRGkq0hhIthtYW1jvGY52RWPd0dCA5O7Y0M7s9M0/jCQrpFIzle6M7nVPrrWNLTaF0Q79+fzBxfzD1YCjdGFoIhLMtY0ut48ttkdXW8eXA6FLTSPbB8EJjKNMUWmwOZwOjucDYcuvEStvkesfURvvURtvketvkeltkrWNqo3Nmuzua79WpP03DSzS2TpO7NMNorij3utzPVle3GZ/lNao8rujR0I6kaY/T1Jei3gR169QZpdbIxv1Q1v848W3XzM3OqRsPJ7/piNzomLzzSG8cybZNbxXkfnSVprf3L+0N1/W7q7S1RmtrtLpGy6u0vErLy7SWpc1F2k0zmmeUYpRgpOdpZpPGVyiUof4E65lZbx9bbBrU7/ZO3e2bvts309A309A3+yAYbRzUm4eSLeF0YDjVOKg/6I/dfzxXaPcez917PHc/GH3QH28c1JuGkk1DicahROOg/mBQbxzUGwcTTUPJpqFUy0i6dXSxfWLp4eRq5+Ra5/R698xGz+xmz9xOXzz/WKdgkoYWKJyliVWa3qTZVZrNUnSe4jrFJ9diQ+lYz2ysZURvGdFbRpItI8nWkWRLaG+hdURvH9Xbx2IPI9HOydmgPj2SnZzcjMRpeHb30dTmw/HVQDh3bzB1u3fuZkfkWvPw1y3hb9rGbnZMfNs5+X3P7O2+6J2gfncg5X+sf987923X9I2OyM2Hk98+nLrVNfN9z+ztvpg/qN8dSN0bWmgYSjcMzt8dnL87MH9/ONM4utQyvtY2udkdo2CahldofIsm8zRDNOfqbxpU3owP8sY4L8dC6NHQDrNp3XHqitLDuXz7zE7r5OaDUNb/SL/xcPJKU+hy4/Cl+wMX7/VfbOi/3jZx55HeFM49nN3pS9JwjiY296QkWbxln6P8Em2t0NoqLa1SbpUWVymzQgtLlM2ylUx+Yz6/k8xTIk/xPEXzFFmjcJb6k9Qzt906nrvfr/u7Ijdahm60DN9oGb7RErrZGrrVMXa7K3Knd6bh8dwPvbP+7qnbnRO3OsZudYzd6hi91T56q3301sOJ77sm/F1T/t4Zf8+0v3vK3z11u2vK3z3l757298zc6Z394VH0XlC/P5hsDKUbQ+mm0ELhkrllLNc6sdo+udY5s9UXp/4UhbI0sUaTOZpaoNkkzUXZ3MTq3MB8tGsm2hyKB0KJllCyZSTVGk61jqbaCm0s2T6ud0zE2iNzHZGZR/HIUGZ8fC08mw9OrD8cWWrsn7/dF7vRHrn8YPgLf88/b7R++m3H+dtdX9x59FVDf/394SvNI9dax7/pmLzaOn6pKXTh/sAXdx59+cPjr+4GL9wbqL8/fKU5fLV14vrDqZtdcze65m50zd7omrnROf1tT/R2MPnDYOZ+aKl1aqcrQcEsjWzQ+C5NEs0U5TV2dC3qpPIQejS0Q2ha+9R229RmS2SjeXy1aXT5h/7Ut53TV5tHLtx9/OWd3s/9Pee/7zz/XeflxqFvO6cbBuZbI+s9MTaYobF1mmN7l/bFW/Y7OdpYoaVVyqzSwgqllimxxPRcfj6TX0zvLCW31xI7eX2Hors0u0MTqzS8SI901jm12RRa8PfOXm8J1d/trW/ovdTQe6mh71LDo2uNg9cDoZvt4991Td7qmLjRNvp1IPR109C1psGrjYNXGweuPBi41jz0dWD4ekv4RtvoN62j37SGr7eEv24Zud4S/qZ19Hrb2Ddt498+jNzqmrrdM+vvixnbD8HE3cH5+0OLjeFc4dK4f55GcjSWoUiKpuI0M5OfHV2ZCyajD6eijUPxpmG9eSTREk61jqXaxubbx+c7JuY7IsmOiN4RiXVE5jomp3r0iYGFcHh1aHKne2SluT/t745+3Rr5qmHgk287P7jS9PYXt31f/fDepft/v9b88fX2T77t+szf++Xd/q8eDH/+Q/+n3/d8fLPjw68Df/+65ePr7R/fePjPb7s+vd37+Q/9X94frm8eu9g8erFp5EJj6KsHw5cC4193TN/ojn/3eP5eeK11lnrTNLRO4W2aYDRVwV+xqUoz/bUE6491HPkEQEM7IU1rmVhvHl9tHltpGl26P5z1P9K/6YhcejD0hb/n/Pedn916+OnNtk9utl5oCF5vm/A/TjSNrjyc3Q2maXSVZvIUzZPOKEWUpnyGNnO0vESZFUouk77Eorn8XHZ3JrMTS28nUltpfTOnb23Gtmluh2Z2aHSVBheoV8+3T27cG5r/rnPqSuPQ598//OL7h1/c7vzidueXt7su3H10uXHg65aRGx3j37SOXguErjQNX77fX3+vv/5e8GLD4wt3H9Xf67/0YPBy49DV5tDV5tCVplDhPyWXm4avNIWuNoeuBELXWsLX28dvdERudk7feDh14+HUNx2T33RM3uyc+a4ndvuRfqd/vjG82j6906vT0CKNzNNYgiJRmp7Oz4SWZx8l5tono/cGY/eH9cZQoimUCoykWkdTbWOptvFU+0SifUJvj8TaJ+faJye742PBdCi0Mjix9XBo6V5P4kb75IX7oU++637/ctNb52//6cOrb/zjxl8+++7tr3545+KD96+2/P1Gxz+/6/nXneA/bvV8+E3Hu5eb//ZVw7kL93wXH7xzqendy4EPrnd8/G33p7cfn787eP6Hgc/u9H/qf/zJ7UefNwxdaBy90jb9TZd+e2i5aYp1pmhgjUJbNMZo0vL7R4fceL/HdOTHPRraSWta8/hq0+hKY3jpwUi2YThzuzd2vX3i0oPBz/0957/r/Ne3HZ/cbP3kRuuFu4+vt43ffqQ3ji4/nN0JzlN4labzNJunWEHu2W6arWVYNstSORbL5ueyu1OL25HFrfGFzan5zWhiI6FvLMQ21+a22Ow2Te/Q6AoNZqg3Tm1Tmw2DC992TV9pHDr/fdfn33d9/l3n5991nv+u86sf+i7dH7gaGLnePnGtdfRqYORK09ClB4P19wcu3gteaHh84e6jiw3Bi/f6Lz0YvNQ4tNceDF16MHSpcehy4/ClpuHLjaGrzSNXW8autY1/3RG51jZxtXX8asvolUD4atvE9YdTN7qjt3r1hqFsILLVHaP+DA2nKKzTxBxNTeWnh5dmehOzLRNzP/RHGwZi9wb1e4PJB0PJxuFU00iyOZwMjCZaxuIt49HAxEwgEumMjvalh4eW+8e32gdyd7v1r1sin98d+vhGl6/+wZ8//fb371567e9X3/jk5l8+u/32Vw2+y83vf93+0c2eT24HP7rZ8/619nOXmt768u5bXzb89cL9ty8++Ft947tXWz/4pvPjW72f3gl+cvvxP77v+/hW799vdH/y/ePPG0IXmyNXO+Zu9WfvR/IPUxRcpeEtGmUUKe7mI/+xPeg7GtrRNq0o9LmB6OpwbHVgJvtoItU9Eu8YnG4fmGrrn2wNRlqDka5Q9NHE/ODsUji5GcnkZ1dI36R0njKMFhllGS2xnWW2ucJWVvPZtXx6bTe1upNc2dFXtvWlrWRuK53dWlzcWspsb2Z22MIupfOU2KTYGs3kKJLOj8TX+qczPWN6x+BMx+B0e7F1Ds91h+O948nHkflHkVTfeLJ3PNEzpneH493heOdIrDMU7RqJFT52j+p7LazvL4/q3aN6z1iiZyzZM57qnUj1jCe7xxLdYb0zHO8eS/SMp/oiC4+nFgdja+HkzuQiza1QbIn0LCUzND/P0vH19HQ2PZpMD85lBucyg7OLg7PZwdnc0FxueC43HMuGYosj8cWReCasp8PJVCSjzyzHYxtzyd2J2PrQdK5vbL59ON78eKqhM3y7tf/mg+5bzX3ftwTvtA/+0Dlyr2essW+yOTjbOhQL9M82PZ661zN+tzN8tzN8tyvc0DXa0D12v3ei8dFUc3CmZXAuMDDbHJxpejz1YG+r+MNwsnt84fHcWiiVj+RobpPiO6X/b5X95Xc0NLST2bSm0eXG8NJgdO3Cdy3Pn/3HM699cOr0uadeevMnz5/58XNnfvzsa//+m9d+/JvXnnrpzV/+4Z3n3vj4pbc//8N7F898XP/m+fpzF+p9F+rfvVD/3oX6D7764sOvPv3wy48++vLdj754+6PP3/ro/Jt/P//nDz87+8Fnb73/2bn3Pnv33c8+fOf8v9754qLvy/pzX9W/db7+7Cf1f/qo/vfv1f/urfPPnvn7qdPnfvri2Z/+9ux/vvDGT154/ScvvP7U7/7y9Ctvn/q975n/eu9Xf3zvl39895d/eOfU732nTp97+tW3n37lrz9/+a2fv/zXp195++lX33761b/94vS5X5w+d+r0uVOnfaf2Foo9v/f98g/v/PIP7576ve8Xr/7t6Vfe/vnLbz396tunTvt++cd3n3nt/Rf+/M9X/vbFH9+vP/uP+r98VP/WB/V/e6/e985F35v/eue1D9999e13n3/93efPvPfcn95/9rUPfvNfHzz72gfP/emD58988MLr7//27Hu/+8u7L7/17itvn/vje2+//vFbb372F9+F1946/8rZfzz/2ge/PH3uqd/9+cfPvvZ/Tr1S99Pn/+fPX/zfp17+f786/e+/+eNPnj/z0xf//POX/3rq976nX337Zy+9+dMXz/7k+TP/UWjPnfmP58785IXXf/rin5966c2fv/zXn7305lMv/vk/f3v2J8+//tSLf/75K3899XvfM6+9/8JfPn31nYt/+qj+L+fr//pl/bmL9e/U179XX/9eff37aGhoJ7tpTWMrTWMrc5nN//Wz38r/QAI4LgQCAaV+eQMAwHGieXy1eXx1bnHrfz/94lHnAqpGSaltJTtQRMYDAMALFH4FIZbb/b+nXj7qXEDVsGp9wICSBwCAF+iKUVeMEivs3399+qhzAVXDVuvdeQAAeIHHaQqmKbXOfvL8adNFn/UaUP6q8BBQukoVeOB9tO056JRcYHvBrqr1ATmU8lEqQckzr2TeHuSlZBtXtV4AjgfDSzS8TOlN9tSLp42HuGDmHEWaZkx5mlapOrH9aNuj6vMQ4KmYSbPEQsnbvCrJVGsTwf4SDILkR9dZAXA8GNug0U1a3GE/f3lf62Xk4Gjh5aaUs9LkrzCxg4Mnc7Y9pnp5Dm3t3WXiaF+51sscDMZAMnFr+eAHwA2TOzS5Q9k8+8UrIq3nTQ/bfuu8Etu77jfVwkueh21uMnWJ83SsVzWuUhWlTtseU1yeQ1t7d5kc0FbGDXkeTAbivVCtrACoUabzNJ2nXJ6devW0cW5oEvc0rCJlXWWcYzx7d8vW2Wubs4Bq1VvJssbRLPlCbC2t42Os1Nhj3ZC3IJmJ7X5x3ErS2HYrXlzjwFoDieO6ywqA2mWW0SyjJcZ+eVr5u1nBfDBOPOuCpCtVe3FKAmNbLRAHrcqy47AoVWHqFC/wRs9xWTIT+UIqL1k8zsbR5m1VlawAqGkKvz27zNivDkDrBZ2OBmJ7XmjVKcoTAqV8XC/zQitVwctcvCDYROajYybyJbjeZY5xA0VsNxTHVc0KgFqn8MeDVhh7pjKtl5lI4jkpv8zzb+yXnKtie8l6K8lf0l6mBFMnb8G0bDWzwttKkIk1K5M3cf5K9qpjLo4rsxaA40fhz0CvMvYbodYL5r91Ttp2ilcp9Qv8a3yNsKVkKQhha8OztzXj1SWOK5M/bxNjAqYF07L1o2qnYzKmVbbGvCHi+ZGMa+tfMq78LgDgGDBPNE+0xthzp/HerHcwSbxV6GVU+wDyAgAcERmiDNE6Y89D6z0ET+utou/oAQDgBRaJFok2oPUewnqfxNrP65FZBQA4fiwQZey0njfVbftd64KS+lQSCACguZpBLr66OKB5Xcn0V03Jg6SI5g33cATXgJrw6zKTgeC7L4E3x+/ETtzuAaCqlO7piSepbf+Rz+sKdcZao0xQ71D4y+CrjD3L0XrHodTKR81qxjuMBD3W0I7IFgzACSbA+WZeUgcFM/0Q5rUgunWtozicONGYXKfZLVrOs1/ztd7Rifw+kDGQiQIAUEUwqXmTVF5tD2FeK+kMr19J2TxFOEsTK5TbYb96RVnrbU/CNa71gvO8CzOTve2ViO0qmX7VJHnR5as4UOTrkvRTO6WpclTJB/iTWjBJZZZlfDpmJTCwzhf5cLw8j+/x45KBeRpZpMUtduqlPa23jqntWBuRPFBKPY67zYptGqp7S2kTeWOjJW/Z+FGmXya67W5yV8JBw6tdU5xyqkN0hAhyO5LMrUMnmEqmnRUon6cBu2lr9SZTo20mvA0FR454tG0/1vLBcyA8iu8OpimzyX7xu7Lr+hLW3Wa7j62b2BrbrpXZ2bY7RmlvCY6hCjcxmomXA+VTyLFfJq543GoEXm5KOZuMj2O9R4j8tLI1Fn/UDn5ei1OyHhi86AHDFLNG8TJ98Z3BeVrYYL94sSKtF4y7rUNJ58YQtv3WTlsEHnhHoXhDmUDGw8t0tIn7JePyjmZBXbb9vBxU/Tj2O+YvU69glWRdpk7HeqUzHXQAAB5HSURBVFXHR1CXeHzEfsSDI6aUvG1/VTBlbttj3YTXzzPm+eQVYjvU4k08y6P47uB82XW9aUzFu824VryzHTe3rjXZ2CJZpq2xqUylw1EmSumjsQRBv2YpUzKc1Y84H3Gq1jyrsmxblEyZjsaqdfE2ceGHl5u4LoGxzLIqRieaZXcYsSYpaWyMYgxku1YmGZ6xYyBeCN5onCD6kyyUocXN/fv1hX7egvWAsF0l2AfWnSo4JsQ7Rn5v8Q4gRw8yNjxLa5nW41uwoWpERz8Ct4I85V2p2otTkjd2jCsuR75enplxrUxdAmOZZdcE7A4PnlurseCjZjcUphptN7eNbuvc9K+1n+fHZCMO7WWG0jSao+w2+9XLylqvusN4/bxjQnCsiEPw4toe60qbKFma5pJxDtj2q8Y1mTn6EbgV5C9pILbnhZYfYYHPCuO69uMirqOxzLJkFNu4pmXjvwJjx4+OPTLLjrFkjAVbmYqtfDyPGSOLe89cPiPxzKXjsDp22vZLhrDF1piH5Bzj9ci4FfgsfRSk4TquTAkyuanWpVo7L4Rk1bYhKolbiR8Ze8cNBX4E/jUnBbTFuonAScAJnnPbHl6Sks4FThyNJcfNxXgeM8ZyNLlKSzvs169WU+sDnOsFx56q7GYBpiOJd3gJDjieT1tXrvtd1yJOyTEZQWmu+wX+VUtWCiFZV1X8aPxDSxA3ILFfrMulHtOCI6U8rU6sfir5KGMg6Jc3tlZktZT05mI8jxnjOZpao6Ud9hu792atQyazb+QPIBkDQb9n9wo4YKzSeRxRrUJwwrB+rH2td3fSEvR746jgMrZIkyvc63rbc53qWVRwwpTpse0XnHgAEBMwcNS5HCry001TuYdzaPNaNajY8qTtfW0kTRM5ym2zZ145bRpKeY0ujZ38cCt1yuQAABCjqvVKrsSrqjKvD0FnvMxwcmdskXJb7JmX8bdKAADAowzqW6MZym3tPXMJAADAgwwl9q7rofUAAOBZwmmKLNHS9t7z9QAAADxIZJlm1ml5d++ZSwAAAB4kukn6Lq0x9hy0HgAAvIrpb4sDAADwIBmiRaINxl6A1gMAgFdZIloi2mTsRWg9AAB4lWWiZWg9AAB4m1WiFaItaD0AAHgYaD0AAHifgtZvMvZbaD0AAHiV1eL9ejyHAwAAnmWl+BwOnq8HAADPsky0RLSB92YBAMDDLBFlidYZfg8HAAC8yxJRhmiNsV9D6wEAwKtkidJEKwy/Xw8AAN4lQ5QkWs6zUy9B6wEAwKMsEOl5WtphT7+4p/W2fypeCdPfJa+RP+N7+JlUOIwH59+6VeU7XTJohf4rqbeS0LzxOYRxA6A6zBNFdym7zX72wmlNXaZ5f6P9qLSeF+uo5uRBR6yW1lfiTSni0cq9jJl4W5llAGqRFNHcNi1usaeeP206Xm0/2l7XmHwerdbXfj416/8QtP6ovMlrvdgMWg+OKymi2W1a3GI/fc6s9SZstV6zO8oFcyBgwNa5rbG8nwPNh0fAgjW0TFyeE8FQiJdV6+IlL3AuMz5Wz+J8eMU6piqut8JUZQqxDaqaJy95yfwBsGeeKLpD2W2b63p5bI/RypeNH42Hu8D+oPPhlS8ObUr74MbHNjfH8REnr5SPLYFyHP1b6xJnW608bROzVuFob0xM7E1yWeAHAFnSRPE85bbZz15wr/WaujZZtzViXSV2K5OP1T/PiSAfMVZj3tR1zEdm2eRKUIJjngLnSvnwcEyDV5eLbZVslBK27Rf0WPPn7RdxjYJxAECWRaIk0dIu+8Xv3NyvN2I7OR0nKs/GcZX8Wl4+8vPZERlXtvk4GotzdlejZOEu8uHhmIYgtFKekv5lkBk6sY1p16juF54fANyQK71L9YrDcziBIgJvAQNWJ6rL1o+O9gedjyCK8aM4VdfjYKpF1T8vYUEhVRkfmTQEoR1dVTFP21iq/o07Qqtgv/P8AOCGJaJFojXD7+FYj28ljMclb1pK9gsykU/SZCYZQmkQAhYcQwvqtc1TYCP2L4ir1K+VS49jnrzxkVnlaC8fgjcO8hi3FeQpGBPH8RT7d6wdAClWiHL4nUs5rHP7cKafQEdqiqMaHwCAM6W/S4W/VVLLQDoBABWxRrSKvzcLAADeZo1ojWgbWg8AAB4GWg8AAN4HWg8AAN5nFVoPAACeZxXfzQIAgOdZJlqB1gMAgLdZIlom2oTWAwCAh8kS5Yg2GfsttB4AALxKhigLrQcAAG+zQJQh2oDWAwCAh1kgWiDawO/hAACAh0kTLRCtQ+sBAMDDzBOlofUAAOBtUtB6AADwPCmieWg9AAB4myS0HgAAPA+0HgAAvE8S9+sBAMDzFL6bxfP1AADgZebxLhUAAHieBaLFcq0PGHDtluekKs5d53OYEbXyYk0JHNU4AABOKJlyrTeqj4wS2RrwnKg6ry68iNVKw+pHEPEIxwEAcBJZJMoWtd722tP00fY6XeC/drTeNmi10rD1I3myhNYDAA6cLF/rTdhqveakVvLXtkasQW01WmBcC3F5OfDyAQCAgyJX1PrnnbRegO2GkoJr/Fj6l+dNclngR7C5u1iOfnjjIBgfAACoMjmiRaJ1xp6rQOs1OWF17LFqNE8uxRot0HoXGu1oL+ivfEMAAKgCWaIM0Rpjz7q6X2+kQm3VLBptFX1J5zytl+nhdbrwI2MArQcAHAY5ogWiVcZ+86rDcziOWq+VXxFbnTguS2q9qh/bcqybuItVXT8AAHAglLT+169U5/l6o+TZCqJ1lUCUjZa2/bwNbe15CVvX8gZBMDjV8gMAANVnqaj1z7yM92YBAMCjLBFlCtf10HoAAPAqK0SLRGuGezgAAAC8xipRjmit+N0sAAAAD7JGlCNaZ+xZ/M4lAAB4lVWipeJ7s0edCwAAgINhjWiZaBO/Xw8AAB5mnWiVaJOxF4vvzfKef8eT4CVqajQEe0c1zwp3dHWPkxo86uTzcfH+xBHWe1SDLHhJpdZ2vRdYJ1oj2mLsd6dPByyvrZbMMPRGqjIaVRlP487izRx3DmUsK9lcMo3KHVbxuFVNRvXc4CJE5bgo6oDimnqgOVVmg2idaJuxl8r/LpXJDONeXaquidVC0iHPrNbqOtrj1oXWHyYBA0qbHFBcY49qYsCZDaINFa23PfeqCoRpE+NHSf+2m6j6CViQLEGQj6oTyXrFriTzFBSrNA6O+VsTO9C6eP2OefI65fMX11Vhvar5COpVDS2wlB9P1bimYpW8AWcKWr/D2MsSWm867IyWkjuGt4l1N8sYW+Pa+nFMwBpOvgpxPpIe3PkJlOM6z2rlr1XpOHGsSz5/1XE25WzaVjIfGXurmTii7cDylq1mjtEdzQTGgvFUcuUufyCLktablgMWHMOJD1PTPnY8pq3Z2vqxpmothFe4YxW8HlUPtgm788Nb62I8VePyhtd2/F375+1HST+CbY2erdvyenh1SRYrsLTNh5e/0UA+unySPGPJfeHoyjSSSokBZyrXeqVwjoepqrFpQ3d+VMvhWVbowcWcEZsJBkdpR8jH5Q2v5LCI/bvIWXWcqzKekt5kLN2Ng9KwK+0d1fFUchUo4iIx4Ey1tN7FgaU0VUwGgXJsN5EPai1HvgqZQgQelAbEMRN3eVYrf56ratXlIn/Vca7KeEp6k7F0Nw62u0Y1tNhYcjyV4irtC6CMSesDBko2ph7rsuoOtnUoOKwF/lX9aJzj1fpRJn/X46BZRtWFH8lxs63XtnbbYZHP33ZMDqguef+2/bb2Mk5saxTn41g1z0wyH1Mn76M4rqOxdSvJVJXiusgHyGK9rj9QqrILjU5wTAAAgDOHqfVVPGPj5A8AAAoc8nU9AACAIwBaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3seo9ZLPvR5ZrqCcw9kjR7jfj+pgs8bFc9/g2GP7LlVhlfWwPtYH+vHNXMBB75GS/8Pf9aoRq5We42F/rGcBOLmcEK0/vpmLOTStP0xcXEFXJU9eXOuk8OSxBDxOhVovnh6V9/OwtQ+Uw+vnrbJ22pYsn4+MsTUub9l1yZXXxcvfaiCTpExc+QzF/lWD2sY1FavkDYBaQfB7OLxJbvuRNwF4NjLLPFz4cSyHZ1+5UlSevzEZSbOq1BUox7YE41oX+TtGdzQTGAvGQcmVu/wBqC0E1/VWbIXDVg7E/bZube0FaVjtBXNbNa6xx0VKMsYulq358MyqW5egXmtcpfxdhJY35uWj6so0kkqJAVArVK71YjPHSegY1DENmbgyaUiuUoqrZO+4bNUanllV6hLYO46nZP4uQssbq+4XnmWgiIvEAKgVqqX1B7Esk4akH6PcKNnLcND5G5OXNKtKXQJ7234X+bsILTaWGU/VuBWOIQA1Ae/5epNZwIK139Zes5tyAnulCSmYhOKUZPwoTWlevQJj2zxt/fDKNC04lqBaF89e4EcQl/dRHNdFtpKpKsV1kQ8AtQXemwUAAO8DrQcAAO8DrQcAAO8DrQcAAO8DrQcAAO8DrQcAAO8DrQcAAO+jpPV4shgAAI4l8lqPt0gAAOC4IqP1eGMQAACON7iuBwAA7yP+e7NKP2MCAACgRsF1PQAAeB9oPQAAeB9oPQAAeB/V53Cg+AAAcPzAe7MAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9xL+HUzLDw/U1yOHskSPc70d1sFnj4v0ScOwxXdcbD2XrYX2sD/Tjm7mAg94jJf+Hv+tVI1YrPcfD/ljPAnByOSFaf3wzF3NoWn+YuLiCrkqevLjWSeHJYwl4nAq1Xjw9Ku/nYWsfKIfXz1tl7bQtWT4fGWNrXN6y65Irr4uXv9VAJkmZuPIZiv2rBrWNaypWyRsAtYKt1vMOaNuJZLvK0UZmmYcLP47l8OwrV4rK8zcmI2lWlboC5diWYFzrIn/H6I5mAmPBOCi5cpc/ALWF4Lreiq1w2MqBuN/Wra29IA2rvWBuq8Y19rhIScbYxbI1H55ZdesS1GuNq5S/i9Dyxrx8VF2ZRlIpMQBqhcq1XmzmOAkdgzqmIRNXJg3JVUpxlewdl61awzOrSl0Ce8fxlMzfRWh5Y9X9wrMMFHGRGAC1QrW0/iCWZdKQ9GOUGyV7GQ46f2PykmZVqUtgb9vvIn8XocXGMuOpGrfCMQSgJuA9X28yC1iw9tvaa3ZTTmCvNCEFk1CckowfpSnNq1dgbJunrR9emaYFxxJU6+LZC/wI4vI+iuO6yFYyVaW4LvIBoLbAe7MAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9bLVe8rlpAAAAxwOr1vNeSOGtBQAAUOvIvDcLrQcAgOONzHW9EWg9AAAcP5S0HkIPAADHEnmth9ADAMBxRVLrIfQAAHCMwXM4AADgfXjP4Vj1HY/YAwDAcQXvzQIAgPeB1gMAgPeB1gMAgPeB1gMAgPeB1gMAgPeB1gMAgPeB1gMAgPeReb5ew+/X1ySHs0eOcL8f1cHGe28cUwAcY0zX9eJXZI/1gX58Mxdw0Huk5P/wd71qxGql53jYH+tZAE4uJ0Trj2/mYg5N6w8TF1fQVcmTF9c6KTx5LAGPU6HWi6dH5f08bO0D5fD6eausnbYly+cjY2yNy1t2XXLldfHytxrIJCkTVz5DsX/VoLZxTcUqeQOgVrDVet4BbTuRbFc52sgs83Dhx7Ecnn3lSlF5/sZkJM2qUlegHNsSjGtd5O8Y3dFMYCwYByVX7vIHoLYQXNdbsRUOWzkQ99u6tbUXpGG1F8xt1bjGHhcpyRi7WLbmwzOrbl2Ceq1xlfJ3EVremJePqivTSColBkCtULnWi80cJ6FjUMc0ZOLKpCG5Simukr3jslVreGZVqUtg7ziekvm7CC1vrLpfeJaBIi4SA6BWqJbWH8SyTBqSfoxyo2Qvw0Hnb0xe0qwqdQnsbftd5O8itNhYZjxV41Y4hgDUBLzn601mAQvWflt7zW7KCeyVJqRgEopTkvGjNKV59QqMbfO09cMr07TgWIJqXTx7gR9BXN5HcVwX2UqmqhTXRT4A1BZ4bxYAALwPtB4AALwPtB4AALwPtB4AALwPtB4AALwPtB4AALwPtB4AALyPrdaLn5vG88UAAHDMsGo974UU3kcAAAC1jsx7s8YeXNoDAMDxQ+m6HrdxAADgWKKq9bYGAAAAahp5rTdd3R92ogAAAFyjpPU8AwAAADUNnsMBAADvw3sOx1bf8cUsAAAcS/DeLAAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB+Z5+tr7bH6w8mn1qrWVN5ic/cyRO3UK8jftp9nX0l/AO+XAC9h0nrN8ktnBWrtED/ofIyDUGGgKuZ50NpdI3vZmIat5kraV7Ks8Y+BGhklANSQ+Y0EXucRcmhaXyN+jmP0qiDQYkebypetWm/sB+A4oar1ttc4kkd/oByrc9tlwSbifmsnrzpequISHPsl85fJUymuYxUV1nWYGEPLpGG1t46nuF+zVM3rB+A4oaT1toe+YCtbJy6WxeFk8rFOV8c8xZYy+Vs/ytvbRpfMR8Zexokgz0PAOgKO+4U3YpL9xsHX7I6rgOUwA+DY4OIejlWPBNPP0YnMsnWOqeZj7FFN1dpv8i9wKD+YMnnyeqz1OiYmma2qh6rDGyv5wdHKR9Wx3zr+vH4AjhOVa718LJl5ywskacbLp5JUlfKvxI9jngJjx0Ay8OxV/VQRyTF3vb+sy9ZVvH4AjhPV0nqZCeBu7mlVvYcjifwgSMZVtZfJynH8K6za0f8BoTrOB7Gscfad9SMAxwOT1gcMlGxMPdZlyaPfcV6Zppbj3BOk6tjpmKetvW2e8pu4zjNgQT4fmcId/Tt6qC68uI7jJjmkMv2CENUqE4DDA+/NAgCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA97FqfcCAa7c8J1Vx7jqfw4yolRdrSuCoxgEAcEIxab1RfWSUyNaA50TVeXXhRaxWGlY/gohHOA4AgJOIUettrz1NH22v0wX+a0frbYNWKw1bP5InS2g9AODAEWi9CVut15zUSv7a1og1qK1GC4xrIS4vB14+AABwUMhrvQDbDSUF1/ix9C/Pm+SywI9gc3exHP3wxkEwPgAAUGWqovWanLA69lg1mieXYo0WaL0LjXa0F/RXviEAAFSBCu/XG6lQWzWLRltFX9I5T+tlenidLvzIGEDrAQCHgfxzOI5ar5VfEVudOC5Lar2qH9tyrJu4i1VdPwAAcCBU/fl6o+TZCqJ1lUCUjZa2/bwNbe15CVvX8gZBMDjV8gMAANUH780CAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3sb43y3v+HU+Cl6ip0RDsHdU8K9zR1T1OavCok8/HxfsTR1jvUQ2y4CWVWtv1XsCk9Zrl7dMCGHojVRmNqoyncWfxZo47hzKWlWwumUblDqt43Komo3pucBGiclwUdUBxTT3QnCrDe2/WZIZxry5V18RqIemQZ1ZrdR3tcetC6w+TgAGlTQ4orrFHNTHgjKrW2557VQXCtInxo6R/201U/QQsSJYgyEfViWS9YleSeQqKVRoHx/ytiR1oXbx+xzx5nfL5i+uqsF7VfAT1qoYWWMqPp2pcU7FK3oAzSlpvOuyMlpI7hreJdTfLGFvj2vpxTMAaTr4KcT6SHtz5CZTjOs9q5a9V6ThxrEs+f9VxNuVs2lYyHxl7q5k4ou3A8patZo7RHc0ExoLxVHLlLn8gi4t7ONbjz/YwtUV8mJr2seMxbc3W1o81VWshvMIdq+D1qHqwTdidH95aF+OpGpc3vLbj79o/bz9K+hFsa/Rs3ZbXw6tLsliBpW0+vPyNBvLR5ZPkGUvuC0dXppFUSgw4U7nWK4VzPExVjU0buvOjWg7PskIPLuaM2EwwOEo7Qj4ub3glh0Xs30XOquNclfGU9CZj6W4clIZdae+ojqeSq0ARF4kBZ6ql9S4OLKWpYjIIlGO7iXxQaznyVcgUIvCgNCCOmbjLs1r581xVqy4X+auOc1XGU9KbjKW7cbDdNaqhxcaS46kUV2lfAGVs/1aJ7aALdq3qDrZ1KDisBf5V/Wic49X6USZ/1+OgWUbVhR/JcbOt17Z222GRz992TA6oLnn/tv229jJObGsU5+NYNc9MMh9TJ++jOK6jsXUryVSV4rrIB8hyyO/NVmUXGp3gmAAAAGcOU+ureMbGyR8AABTA7+EAAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3kfn9eg3PvdQkh7NHjnC/H9XBZo2L577Bscf2XarCKuthfawP9OObuYCD3iMl/4e/61UjVis9x8P+WM8CcHI5IVp/fDMXc2haf5i4uIKuSp68uNZJ4cljCXicCrVePD0q7+dhax8oh9fPW2XttC1ZPh8ZY2tc3rLrkiuvi5e/1UAmSZm48hmK/asGtY1rKlbJGwC1guD3cHiT3PYjbwLwbGSWebjw41gOz75ypag8f2MykmZVqStQjm0JxrUu8neM7mgmMBaMg5Ird/kDUFsIruut2AqHrRyI+23d2toL0rDaC+a2alxjj4uUZIxdLFvz4ZlVty5Bvda4Svm7CC1vzMtH1ZVpJJUSA6BWqFzrxWaOk9AxqGMaMnFl0pBcpRRXyd5x2ao1PLOq1CWwdxxPyfxdhJY3Vt0vPMtAEReJAVArVEvrD2JZJg1JP0a5UbKX4aDzNyYvaVaVugT2tv0u8ncRWmwsM56qcSscQwBqAt7z9SazgAVrv629ZjflBPZKE1IwCcUpyfhRmtK8egXGtnna+uGVaVpwLEG1Lp69wI8gLu+jOK6LbCVTVYrrIh8Aagu8NwsAAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN6Hp/V4jhgAALyDrdbjnREAAPAUVq3H+4EAAOA1eL+HA60HAADvYP09nEI/tB4AALyD+G+LQ+4BAMAL4DkcAADwPtB6AADwPuJnLiH3AADgBfDeLAAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB/xbyQUbGrtWfvDyafWqtZUXnBz94ZErdV7+DiOG4YIHFdMWq+V/9RlyazWDvGDzsc4CBUGqmKeB63dtbaXDxnr9Y2twUkeInCM4f1+vcms1g7xQ9P6GvFzHKMfO8Ra73jJD0BNo6r1prVKEyBQjtW57bJgE3G/tZNXHS9VcQmO/ZL5y+SpFNexigrrOgnYjr+1H4Bjg5LWmw53o6XMHODZOy6Lw8nkY7IRpxoox3Ut1o/y9rbRJfORsZdxIsjT22AcgAdxcQ/HqkdiWRQ7kVkOCKVcJh9jj2qq1n6Tf4FD+cGUyZPXY63XMTHJbFU9eADHQT6BYwK8QOVaLx+Lp3GOy9ZwqvlUrnqSOVfixzFPgbFjIBl49qp+ji+OlZ6coQBeo1paLzMHZLSSF0jSzJ2GilN1nb9Mbkp5CowdE5ZB1b/HkKn3JIwD8Ca2f1vcds4LpEpyAjhqnEkWedJjWrD149jpmKetvW2e8pu4zjNgQT4fmcId/Tt68ACOg3aiRgN4Dbw3CwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3seq9QEDrt3ynFTFuet8DjMiAADUECatN2qijD7aGvCcqDqvLpB7AMDJxaj1JjW0/Wh7nS7wXztaf1RBAQDg6BFovQnevReZrcT9AQvWoLbnGIGxTFwAADgpyGu9AME5QEZwSx9L/4rPKI7LAj+CfgAA8CxV0XpNRVgFPVaN5l2ni88HkucMAAA4KVR4v96IjLYqabRV9CWd87QeQg8AOKHIP4fjqPVa+WW41YnjsqTWq/qxLQcAAE4QVX++3qizvLOF4Hyg2ck3T/rFai4IAQAAJwu8NwsAAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAJ7n/wMIYaCpA4G4RgAAAABJRU5ErkJggg==" alt="" />
汇编语言-求X的阶乘的更多相关文章
- C语言-求1-20的阶乘的和(函数的递归)
// // main.c // C语言 // // Created by wanghy on 15/9/5. // Copyright (c) 2015年 wanghy. All rights ...
- 递归和非递归分别实现求n的阶乘
思路:举例求6的阶乘,6*5*4*3*2*1.可以将5开始看成另一个整型变量n,用一个循环每次将n的值减少1,.而递归也是如此,每次调用函数的时候将变量减一就可以. 方法一:非递归 //非递归: #i ...
- 求N的阶乘N!中末尾0的个数
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...
- 大数问题:求n的阶乘
题目:求100! 这看起来是一个非常简答的问题,递归解之毫无压力 int func(int n){ if(n <= 1) return 1; else return n*func(n-1); } ...
- 2717: 递归函数求n的阶乘
2717: 递归函数求n的阶乘 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1329 Solved: 942[Submit][Status][Web ...
- 求n的阶乘!
编写一个computer类,类中含有一个求n的阶乘的方法,将该类打包, 在另一个包中引入包,在主类中定义computer类的对象,调用求n的阶乘的方法,并输出结果 结果
- 题目一:编写一个类Computer,类中含有一个求n的阶乘的方法
作业:编写一个类Computer,类中含有一个求n的阶乘的方法.将该类打包,并在另一包中的Java文件App.java中引入包,在主类中定义Computer类的对象,调用求n的阶乘的方法(n值由参数决 ...
- POJ 1401:Factorial 求一个数阶乘的末尾0的个数
Factorial Time Limit: 1500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 9349 Descri ...
- C语言求n的阶乘(n!)
从键盘输入一个数,求出这个数的阶乘,即 n!. 算法思想 首先要清楚阶乘定义,所谓 n 的阶乘,就是从 1 开始乘以比前一个数大 1 的数,一直乘到 n,用公式表示就是:1×2×3×4×…×(n-2) ...
随机推荐
- NULL, '\0',0 '0'的区别
如题,在程序中经常遇到NULL,和'\0',常常疑惑它们是什么关系,其实它们的值是一样的,只不过表现的形式不一样: 1.NULL; NULL 即空指针,在C和C++中的形式不一样,msdn上有如下的内 ...
- 架构设计:负载均衡层设计方案(5)——LVS单节点安装
1.概述 上篇文章<架构设计:负载均衡层设计方案(4)——LVS原理>(http://blog.csdn.net/yinwenjie/article/details/46845997),我 ...
- Redis客户端Java服务接口封装
最近在学习Redis并集成到Spring中去,发现Spring的RedisTemplate并不好用,还没有MongoTemplate好用. 而且发现Jedis和ShardedJedis的方法非常多,覆 ...
- iOS 关于流媒体 的初级认识与使用
1.流媒体指在Internet/Intranet中使用流式传输技术的连续时基媒体,如:音频.视频或多媒体文件.流式媒体在播放前并不下载整个文件,只将开始部分内容存入内存,流式媒体的数据流随时传送随时播 ...
- [Java] HashMap遍历的两种方式
Java中HashMap遍历的两种方式原文地址: http://www.javaweb.cc/language/java/032291.shtml第一种: Map map = new HashMap( ...
- 2.1.4 扫描器X-Scan查本机隐患
X-Scan是由安全焦点开发的一个功能强大的扫描工具.它采用多线程方式对指定IP地址段(或单机)进行安全漏洞检测,支持插件功能. 1.用X-Scan查看本机IP地址 利用X-Scan扫描器来查看本机的 ...
- 《MFC游戏开发》笔记四 键盘响应和鼠标响应:让人物动起来
本系列文章由七十一雾央编写,转载请注明出处. http://blog.csdn.net/u011371356/article/details/9327377 作者:七十一雾央 新浪微博:http:// ...
- pyenv的安装和使用
1. 先安装crul和git sudo apt-get install curl git-core 2. 安装pyenv curl https://raw.github.com/yyuu/pyenv- ...
- Oracle 11g XE 试用记录
安装之前先删除系统环境变量中的oracle_home等配置(如果存在的话): 如果安装后出现Web管理界面不能访问或者数据库不能连接的情况,卸载再多安装几次可能就正常了.状态不正常时,可以使用 C:\ ...
- B-tree解释
1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少 ...