UVa 11762 (期望 DP) Race to 1
设f(x)表示x转移到1需要的次数的期望,p(x)为不超过x的素数的个数,其中能整除x的有g(x)个
则有(1-g(x)/p(x))的概率下一步还是转移到x,剩下的情况各有1/p(x)的概率转移到x/y
根据全期望公式,f(x) = 1 + (1-g(x)/p(x)) * f(x) + sum{ 1/p(x) * f(x/y) | y是能整除x且不超过x的素数 }
代码是用记忆化搜索计算f的
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std; const int maxn = ;
bool vis[maxn + ];
int prime[], pcnt = ; void prime_table()
{
int m = sqrt(maxn + 0.5);
for(int i = ; i <= m; i++) if(!vis[i])
for(int j = i*i; j <= maxn; j += i) vis[j] = true;
for(int i = ; i <= maxn; i++) if(!vis[i]) prime[pcnt++] = i;
} double d[maxn + ]; double dp(int x)
{
if(x == ) return ;
if(vis[x]) return d[x];
vis[x] = ;
double& ans = d[x];
int p = , g = ;
for(int i = ; i < pcnt && prime[i] <= x; i++)
{
p++;
if(x % prime[i] == ) { ans += dp(x / prime[i]); g++; }
}
ans = (ans + p) / g;
return ans;
} int main()
{
//freopen("in.txt", "r", stdin); prime_table();
memset(vis, false, sizeof(vis));
int T;
scanf("%d", &T);
for(int kase = ; kase <= T; kase++)
{
int x;
scanf("%d", &x);
printf("Case %d: %.10f\n", kase, dp(x));
} return ;
}
代码君
UVa 11762 (期望 DP) Race to 1的更多相关文章
- UVa 11427 (期望 DP) Expect the Expected
设d(i, j)表示前i局每局获胜的比例均不超过p,且前i局共获胜j局的概率. d(i, j) = d(i-1, j) * (1-p) + d(i-1, j-1) * p 则只玩一天就就不再玩的概率Q ...
- Uva 11600 期望DP
题意:n个城市,相互可达(有n(n-1)/2条边),其中有一些道路上面有妖怪,现在,从1号城市出发,随机挑取一个城市走去,这个道路上的妖怪就会被消灭,求: 在平均情况下,需要走多少步,使得任意两个城市 ...
- UVa 11762 Race to 1 (数学期望 + 记忆化搜索)
题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. ...
- UVA 11762 - Race to 1(概率)
UVA 11762 - Race to 1 题意:给定一个n,每次随即选择一个n以内的质数,假设不是质因子,就保持不变,假设是的话.就把n除掉该因子,问n变成1的次数的期望值 思路:tot为总的质数. ...
- 算法讲堂二:组合数学 & 概率期望DP
组合数学 1. 排列组合 1. 加法原理 完成一列事的方法有 n 类,其中第 i 类方法包括\(a_i\)种不同的方法,且这些方法互不重合,则完成这件事共有 \(a_1 + a_2 + \cdots ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
随机推荐
- Careercup - Facebook面试题 - 6299074475065344
2014-05-01 01:00 题目链接 原题: Given a matrix with 's. What is the maximum area of the rectangle. In . Ho ...
- HTML的标签-W3School读后总结
学习前端知识有一段时间了,前两天想做个博客园的皮肤的静态页面.虽然做完了,但是有很多不如意的地方,反思一下,还是基础不够好,所以现在把html再过一遍.(这个是Xmind生成的图片)
- 3242: [Noi2013]快餐店 - BZOJ
Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...
- release下去除nslog宏
#ifdef __OPTIMIZE__ #define NSLog(...) #endif 加在pch文件里面
- bzoj 4010: [HNOI2015]菜肴制作 拓扑排序
题目链接: 题目 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory Limit: 512 MB 问题描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴 ...
- Spring实现AOP的4种方式(转)
转自:http://blog.csdn.net/udbnny/article/details/5870076 Spring实现AOP的4种方式 先了解AOP的相关术语:1.通知(Advice):通知定 ...
- Guava文档翻译之ListenableFuture
ListenableFutureExplained 并发是一个困难的问题,但是使用强大而简单的抽象可以极大地简化并发问题.为了简化事情,Guava使用ListenableFuture继承了JDK的Fu ...
- Appium环境配置
一.JDK下载.安装及其环境配置 1.下载.安装略过…… 2.环境配置,以jdk-8u45为例,默认安装在 C:\Program Files\Java\jdk1.8.0_45\路径下. 下面设置环境变 ...
- hdu2544 最短路
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2544 最短路径DIJKSTRA #include<stdio.h> #include<m ...
- PKUSC 模拟赛 day2 下午总结
终于考完了,下午身体状况很不好,看来要锻炼身体了,不然以后ACM没准比赛到一半我就挂掉了 下午差点AK,有一道很简单的题我看错题面了所以没有A掉 第一题显然是非常丝薄的题目 我们很容易通过DP来O(n ...