Description

小Q最近学习了一些图论知识。根据课本,有如下定义。树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度。如果一棵树有N个节点,可以证明其有且仅有N-1 条边。 路径:一棵树上,任意两个节点之间最多有一条简单路径。我们用 dis(a,b)
表示点a和点b的路径上各边长度之和。称dis(a,b)为a、b两个节点间的距离。  
 直径:一棵树上,最长的路径为树的直径。树的直径可能不是唯一的。 
现在小Q想知道,对于给定的一棵树,其直径的长度是多少,以及有多少条边满足所有的直径都经过该边。

Input

第一行包含一个整数N,表示节点数。 
接下来N-1行,每行三个整数a, b, c ,表示点 a和点b之间有一条长度为c
的无向边。

Output

共两行。第一行一个整数,表示直径的长度。第二行一个整数,表示被所有
直径经过的边的数量。

Sample Input

6
3 1 1000
1 4 10
4 2 100
4 5 50
4 6 100

Sample Output

1110
2

【样例说明】
直径共有两条,3 到2的路径和3到6的路径。这两条直径都经过边(3, 1)和边(1, 4)。

HINT

对于100%的测试数据:2≤N≤200000,所有点的编号都在1..N的范围内,

边的权值≤10^9。

【思路】

dfs

第一问两遍dfs可以求出。

对于第二问,首先被所有直径经过的边一定可以在一条直径上找到,其次他们在直径上是连续的否则就不是一棵树。

然后依次枚举一条直径上的结点,对当前结点dfs得到不经过直径上的点的最长边,如果与目前点到枚举起点的距离相同则说明直径发生了分叉,L挪到当前点;如果与当前点到枚举终点的距离相同则说明直径发生了“反向”分叉,停止枚举此时区间确定为当前指针R和L。

至于时间因为我们是从直径出发dfs而且不经过直径,所以每个点至多被访问一次,时间为O(n)

【代码】

 #include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long LL;
const int N = *1e5+;
struct Edge { int u,v,w;
};
vector<Edge> es;
vector<int> g[N]; int n,vis[N]; void read(int& x) {
char c=getchar(); int f=; x=;
while(!isdigit(c)) {if(c=='-')f=-; c=getchar();}
while(isdigit(c)) x=x*+c-'',c=getchar();
x*=f;
}
void adde(int u,int v,int w) {
es.push_back((Edge){u,v,w});
g[u].push_back((int)es.size()-);
} LL maxdis; int maxu,pa[N];
void dfs(int u,int fa,LL d) {
if(d>maxdis) maxdis=d,maxu=u;
for(int i=;i<g[u].size();i++) {
Edge& e=es[g[u][i]];
int v=e.v;
if(v!=fa) {
pa[v]=g[u][i];
dfs(v,u,e.w+d);
}
}
}
void dfs2(int u,int fa,LL d) {
if(d>maxdis) maxdis=d;
for(int i=;i<g[u].size();i++) {
Edge& e=es[g[u][i]];
int v=e.v;
if(v!=fa && !vis[v]) dfs2(v,u,d+e.w);
}
} int main() {
read(n);
int u,v,w;
FOR(i,,n-) {
read(u),read(v),read(w);
adde(u,v,w),adde(v,u,w);
}
maxdis=; dfs(,-,);
int x=maxu;
maxdis=; dfs(x,-,);
LL ans=maxdis; int y=maxu; printf("%lld\n",ans);
for(int i=y;i!=x;i=es[pa[i]].u) vis[i]=;
vis[x]=;
int l=,r=; LL nowdis=;
for(int i=y;i;i=es[pa[i]].u) {
Edge& e=es[pa[i]];
r++;
maxdis=; dfs2(i,-,);
if(maxdis==nowdis) l=r;
if(maxdis==ans-nowdis) break;
nowdis+=e.w;
}
printf("%d",r-l);
return ;
}

bzoj 3124 [Sdoi2013]直径(dfs)的更多相关文章

  1. Bzoj 3124: [Sdoi2013]直径 题解

    3124: [Sdoi2013]直径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1222  Solved: 580[Submit][Status] ...

  2. bzoj 3124: [Sdoi2013]直径

    #include<cstdio> #include<iostream> #define M 400009 #define ll long long using namespac ...

  3. 3124: [Sdoi2013]直径

    3124: [Sdoi2013]直径 https://www.lydsy.com/JudgeOnline/problem.php?id=3124 分析: 所有直径都经过的边,一定都是连续的一段.(画个 ...

  4. bzoj千题计划134:bzoj3124: [Sdoi2013]直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...

  5. bzoj3124: [Sdoi2013]直径 树形dp two points

    题目链接 bzoj3124: [Sdoi2013]直径 题解 发现所有直径都经过的边 一定在一条直径上,并且是连续的 在一条直径上找这段区间的两个就好了 代码 #include<map> ...

  6. [洛谷P3304] [SDOI2013]直径

    洛谷题目链接:[SDOI2013]直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅 ...

  7. 【BZOJ3124】[Sdoi2013]直径 树形DP(不用结论)

    [BZOJ3124][Sdoi2013]直径 Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节 ...

  8. BZOJ_3124_[Sdoi2013]直径_树形DP

    BZOJ_3124_[Sdoi2013]直径_树形DP Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵 ...

  9. bzoj 3124 直径

    Written with StackEdit. Description 小\(Q\)最近学习了一些图论知识.根据课本,有如下定义. 树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一 ...

随机推荐

  1. Detect loop in a singly linked list

    去Twitter面试的被问到这个问题,当时只想到了用HashMap的办法,这种办法时间复杂度O(n),空间复杂度是O(n), 更好的办法是用 FastRunner / SlowRunner appro ...

  2. uva 11461

    简单 打个表 case数不超过200 数据比较水  木有超时的风险~~ /*************************************************************** ...

  3. python url编码

    1.quote:使用适合URL内容的转义序列替换String中的特殊字符. 2.quote_plus:调用quote并使用“+”替换所有空格 3.unquote:使用转义字符的单字符对应物替换'%xx ...

  4. c++实现文本中英文单词和汉字字符的统计

    源代码下载:http://download.csdn.net/detail/nuptboyzhb/4987141 1.统计文本中汉字的频数,为后续的文本分类做基础.对于汉字的统计,需要判断读取的是否为 ...

  5. NYOJ 题目15 括号匹配(二)(区间DP)

    点我看题目 题意 : 中文题不详述. 思路 : 本来以为只是个小模拟,没想到是个区间DP,还是对DP不了解. DP[i][j]代表着从字符串 i 位置到 j 位置需要的最小括号匹配. 所以初始化的DP ...

  6. 接口和JAVA设计模式

  7. 简单Sql语句统计每年每个月的数据,每个月为数据的每列,简单SQL练习

    有一张表,数据如下 请写出结果为以下的SQL语句. 在mysql中创建表 CREATE TABLE `aa` (  `id` int(10) NOT NULL AUTO_INCREMENT COMME ...

  8. codeforces #313 div1 E

    首先我们要注意到一个事情 如果一个灯塔向左覆盖,那么比他小的某个灯塔如果向左覆盖的端点大于当前塔向左覆盖的端点,他一定向右覆盖 对于当前灯塔向右覆盖也是同理 那么我们只需要记录当前覆盖到的端点就可以完 ...

  9. android 官方教程中文版

    感谢这些默默奉献的人 :) https://github.com/kesenhoo/android-training-course-in-chinese http://hukai.me/android ...

  10. 【调侃】IOC前世今生 工厂模式 反射 依赖倒置

    http://www.cnblogs.com/showjan/p/3950989.html