【斜率DP】BZOJ 3675:[Apio2014]序列分割
3675: [Apio2014]序列分割
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 1066 Solved: 427
[Submit][Status][Discuss]
Description
小H最近迷上了一个分割序列的游戏。在这个游戏里,小H需要将一个长
度为N的非负整数序列分割成k+l个非空的子序列。为了得到k+l个子序列,
小H将重复进行七次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的
序列一一也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新
序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序
列中元素和的乘积。小H希望选择一种最佳的分割方案,使得k轮(次)之后,
小H的总得分最大。
Input
输入文件的第一行包含两个整数n和尼(k+1≤n)。
第二行包含n个非负整数a1,n2….,an(0≤ai≤10^4),表示一开始小H得
到的序列。
Output
一行包含一个整数,为小H可以得到的最大得分。
Sample Input
4 1 3 4 0 2 3
Sample Output
HINT
【样例说明】
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置
将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数
字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+
3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个
数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=
20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
【数据规模与评分】
数据满足2≤n≤100000,1≤k≤min(n -1,200)。
看起来很不好做的样子。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath> #define maxn 100001 using namespace std; long long sum[maxn],f[maxn][]; int n,que[maxn],head=,tail=,k,b=; inline double K(int x,int y,int d)
{
return (double)(f[y][d]-f[x][d]+sum[x]*sum[x]-sum[y]*sum[y])/(sum[x]-sum[y]);
} inline long long read()
{
long long x=;
int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} void DP()
{
int d=;
for(int i=;i<=k;i++)
{
d^=;
head=tail=;
for(int j=i;j<=n;j++)
{
while(head<tail && K(que[head],que[head+],d^)<=sum[j])head++;
int sd=que[head];
f[j][d]=f[sd][d^]+sum[sd]*(sum[j]-sum[sd]);
while(head<tail && K(que[tail],j,d^)<=K(que[tail-],que[tail],d^))tail--;
que[++tail]=j;
}
}
printf("%lld",f[n][k&]);
} int main()
{
n=read(),k=read();
for(int i=;i<=n;i++)
{
sum[i]=read();
if(sum[i]==){n--,i--;continue;}
sum[i]+=sum[i-];
}
DP();
return ;
}
【斜率DP】BZOJ 3675:[Apio2014]序列分割的更多相关文章
- BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )
WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
题目链接 BZOJ 3675 首先最后的答案和分割的顺序是无关的, 那么就可以考虑DP了. 设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案. 那么$f[i][j] = max( ...
- bzoj 3675 [Apio2014]序列分割(斜率DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3675 [题意] 将n个数的序列分割k次,每次的利益为分割后两部分数值和的积,求最大利益 ...
- 动态规划(斜率优化):BZOJ 3675 [Apio2014]序列分割
Description 小H最近迷上了一个分割序列的游戏.在这个游戏里,小H需要将一个长度为N的非负整数序列分割成k+l个非空的子序列.为了得到k+l个子序列, 小H将重复进行七次以下的步骤: 1.小 ...
- bzoj 3675: [Apio2014]序列分割
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...
- bzoj 3675: [Apio2014]序列分割【斜率优化dp】
首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来. 这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是 \[ f[i][j]=max { f[k][j]+s[k]*( ...
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...
- BZOJ 3675: [Apio2014]序列分割 动态规划 + 斜率优化 + 卡精度
Code: #include<bits/stdc++.h> #define N 100006 #define M 205 #define ll long long #define setI ...
- 3675: [Apio2014]序列分割
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...
随机推荐
- ActiveMQ(5.10.0) - Message Redelivery and DLQ Handling
When messages expire on the ActiveMQ broker (they exceed their time-to-live, if set) or can’t be red ...
- ORACLE字符串分组聚合函数(字符串连接聚合函数)
ORACLE字符串连接分组串聚函数 wmsys.wm_concat SQL代码: select grp, wmsys.wm_concat(str) grp, 'a1' str from dual un ...
- Unity3d发布错误:could not allocate memery:system out of memery!
可能出现的原因: 1.项目太大了2.项目坏了3.资源坏了4.单个资源定点数超了e. 解决办法:删除了一些模型.是模型太大,面数.顶点数太多的原因. Unity3d里查看模型的顶点数 展开fbx ...
- ios获取当前语言
上代码: + (NSString*)getPreferredLanguage { NSUserDefaults * defaults = [NSUserDefaults standardUserDef ...
- Block深入浅出
研究工具 clang 为了研究编译器的实现原理,我们需要使用 clang 命令.clang 命令可以将 Objetive-C 的源码改写成 C / C++ 语言的,借此可以研究 block 中各个特性 ...
- Linux 下面对物理地址的访问
参考链接:http://zhuhaibobb.blog.163.com/blog/static/2744006720101049030606/ Linux内核提供了/dev/mem驱动,提供了一种直接 ...
- encodeURIComponent=>Uri.EscapeDataString
javascript: encodeURIComponent=> C#: Uri.EscapeDataString http://stackoverflow.com/questions/5754 ...
- KnockoutJS(1)-数据模型
前言 说到数据模型(ViewModel),就不得不提到MVVM模式,接触过WPF和Silverlight的人应该对这个模式比较熟悉. 不熟悉也没多大关系,因为KnockoutJS的使用相对简单. MV ...
- iOS编程——经过UUID和KeyChain来代替Mac地址实现iOS设备的唯一标示(OC版)
iOS编程——通过UUID和KeyChain来代替Mac地址实现iOS设备的唯一标示(OC版) 很多的应用都需要用到手机的唯一标示,而且要求这个唯一标示不能因为应用app的卸载或者改变而变化. 在iO ...
- centos架设FTP服务器
1.安装vsftp在这里,我们架设的是虚拟用户,所谓虚拟用户就是没有使用真实的帐户,只是通过某种手段达到映射帐户和设置权限的目的.yum -y install vsftpd在CentOS中,这样就可以 ...