在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE    1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。

epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);

建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。
需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在
使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
  __uint32_t events;  /* Epoll events */
  epoll_data_t data;  /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里

3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个
maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有
说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

--------------------------------------------------------------------------------------------

从man手册中,得到ET和LT的具体描述如下

EPOLL事件有两种模型:
Edge Triggered (ET)
Level Triggered (LT)

假如有这样一个例子:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......

Edge Triggered 工作模式:

果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩
余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET
工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄
上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用
epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞
写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
   i    基于非阻塞文件句柄
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式

反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即
使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在
epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有
EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。

然后详细解释ET, LT:

LT(level
triggered)是缺省的工作方式,并且同时支持block和no-block
socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你
的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.

ET(edge-
triggered)是高速工作方式,只支持no-block
socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述
符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致
了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only
once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。


许多测试中我们会看到如果没有大量的idle
-connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle-
connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试)

另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:
while(rs)
{
  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
  if(buflen < 0)
  {
    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
    // 在这里就当作是该次事件已处理处.
    if(errno == EAGAIN)
     break;
    else
     return;
   }
   else if(buflen == 0)
   {
     // 这里表示对端的socket已正常关闭.
   }
   if(buflen == sizeof(buf)
     rs = 1;   // 需要再次读取
   else
     rs = 0;
}


有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然
返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man
send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回
-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并
不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)
{
  ssize_t tmp;
  size_t total = buflen;
  const char *p = buffer;

while(1)
  {
    tmp = send(sockfd, p, total, 0);
    if(tmp < 0)
    {
      // 当send收到信号时,可以继续写,但这里返回-1.
      if(errno == EINTR)
        return -1;

// 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,
      // 在这里做延时后再重试.
      if(errno == EAGAIN)
      {
        usleep(1000);
        continue;
      }

return -1;
    }

if((size_t)tmp == total)
      return buflen;

total -= tmp;
    p += tmp;
  }

return tmp;
}

 

epoll
有两种模式,Edge Triggered(简称ET) 和 Level
Triggered(简称LT).在采用这两种模式时要注意的是,如果采用ET模式,那么仅当状态发生变化时才会通知,而采用LT模式类似于原来的
select/poll操作,只要还有没有处理的事件就会一直通知.

以代码来说明问题:
首先给出server的代码,需要说明的是每次accept的连接,加入可读集的时候采用的都是ET模式,而且接收缓冲区是5字节的,也就是每次只接收5字节的数据:

 #include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h> #define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000 void setnonblocking(int sock)
{
int opts;
opts=fcntl(sock,F_GETFL);
if(opts<)
{
perror("fcntl(sock,GETFL)");
return;
}
opts = opts|O_NONBLOCK;
if(fcntl(sock,F_SETFL,opts)<)
{
perror("fcntl(sock,SETFL,opts)");
return;
}
} int main()
{
int i, maxi, listenfd, connfd, sockfd,epfd,nfds;
ssize_t n;
char line[MAXLINE];
socklen_t clilen;
//声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件
struct epoll_event ev,events[];
//生成用于处理accept的epoll专用的文件描述符
epfd=epoll_create();
struct sockaddr_in clientaddr;
struct sockaddr_in serveraddr;
listenfd = socket(AF_INET, SOCK_STREAM, );
//把socket设置为非阻塞方式
//setnonblocking(listenfd);
//设置与要处理的事件相关的文件描述符
ev.data.fd=listenfd;
//设置要处理的事件类型
ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN;
//注册epoll事件
epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
bzero(&serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
char *local_addr="127.0.0.1";
inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);
serveraddr.sin_port=htons(SERV_PORT);
bind(listenfd,(struct sockaddr *)&serveraddr, sizeof(serveraddr));
listen(listenfd, LISTENQ);
maxi = ;
for ( ; ; )
{
//等待epoll事件的发生
nfds=epoll_wait(epfd,events,,);
//处理所发生的所有事件
for(i=;i<nfds;++i)
{
if(events[i].data.fd==listenfd)
{
connfd = accept(listenfd,(struct sockaddr *)&clientaddr, &clilen);
if(connfd<){
perror("connfd<0");
exit();
}
//setnonblocking(connfd);
char *str = inet_ntoa(clientaddr.sin_addr);
printf("accapt a connection from %s",str);
//设置用于读操作的文件描述符
ev.data.fd=connfd;
//设置用于注测的读操作事件
ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN;
//注册ev
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
}
else if(events[i].events&EPOLLIN)
{
printf("EPOLLIN\n");
if ( (sockfd = events[i].data.fd) < )
continue;
if ( (n = read(sockfd, line, MAXLINE)) < ) {
if (errno == ECONNRESET) {
close(sockfd);
events[i].data.fd = -;
} else
printf("readline error\n");
} else if (n == ) {
close(sockfd);
events[i].data.fd = -;
}
line[n] = '\0';
printf("read %s",line);
//设置用于写操作的文件描述符
ev.data.fd=sockfd;
//设置用于注测的写操作事件
ev.events=EPOLLOUT|EPOLLET;
//修改sockfd上要处理的事件为EPOLLOUT
//epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
}
else if(events[i].events&EPOLLOUT)
{
sockfd = events[i].data.fd;
write(sockfd, line, n);
//设置用于读操作的文件描述符
ev.data.fd=sockfd;
//设置用于注测的读操作事件
ev.events=EPOLLIN|EPOLLET;
//修改sockfd上要处理的事件为EPOLIN
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
}
}
}
return ;
}

客户端:

 #include <sys/socket.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h> #define HELLO_WORLD_SERVER_PORT 5000 int main()
{
int clientfd;
clientfd = socket(AF_INET, SOCK_STREAM,); struct sockaddr_in server_addr;
bzero(&server_addr,sizeof(server_addr)); //把一段内存区的内容全部设置为0
server_addr.sin_family = AF_INET;
inet_aton("127.0.0.1",&( server_addr.sin_addr));
server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT); if(connect(clientfd,(struct sockaddr*)&server_addr,sizeof(struct sockaddr_in)) < )
{
printf("错误!\n");
}
}

[转]epoll技术的更多相关文章

  1. Windows完成端口与Linux epoll技术简介

    收藏自:http://www.cnblogs.com/cr0-3/archive/2011/09/09/2172280.html WINDOWS完成端口编程1.基本概念2.WINDOWS完成端口的特点 ...

  2. Windows完成端口与Linux epoll技术简介(能看懂)

    WINDOWS完成端口编程1.基本概念2.WINDOWS完成端口的特点3.完成端口(Completion Ports )相关数据结构和创建4.完成端口线程的工作原理5.Windows完成端口的实例代码 ...

  3. 并发服务器--02(基于I/O复用——运用epoll技术)

    本文承接自上一博文I/O复用——运用Select函数. epoll介绍 epoll是在2.6内核中提出的.和select类似,它也是一种I/O复用技术,是之前的select和poll的增强版本. Li ...

  4. 基本套接字编程(5) -- epoll篇

    1. epoll技术 epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃 ...

  5. Linux Network IO Model、Socket IO Model - select、poll、epoll

    目录 . 引言 . IO机制简介 . 阻塞式IO模型(blocking IO model) . 非阻塞式IO模型(noblocking IO model) . IO复用式IO模型(IO multipl ...

  6. epoll的本质

    目录 一.从网卡接收数据说起 二.如何知道接收了数据? 三.进程阻塞为什么不占用cpu资源? 四.内核接收网络数据全过程 五.同时监视多个socket的简单方法 六.epoll的设计思路 七.epol ...

  7. 基于epoll封装的事件回调miniserver

    epoll技术前两节已经阐述过了,目前主要做一下封装,很多epoll的服务器都是采用事件回调方式处理, 其实并没有什么复杂的,我慢慢给大家阐述下原理. 在networking.h和networking ...

  8. c++ 网络编程(八) LINUX-epoll/windows-IOCP下 socket opoll函数用法 优于select方法的epoll 以及windows下IOCP 解决多进程服务端创建进程资源浪费问题

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9622548.html 锲子:关于并发服务器中的I/O复用实现方式,前面在网络编程系列四还是五来 ...

  9. (转)epoll非阻塞读写规则

    EPOLL技术 在linux的网络编程中,很长的时间都在使用select来做事件触发.在linux新的内核中,有了一种替换它的机制,就是epoll.相比于select,epoll最大的好处在于它不会随 ...

随机推荐

  1. 用UltraISO制作的u盘ubuntu11.04,启动失败解决方案

    错误提示:SYSLINUX 3.84 2009-12-18 EBIOS Copyright c 1994-2009 H.Peter Anvin et al 折腾的很久,尝试用Pauly的bootice ...

  2. P67、H67、H61、P55、H57、H55 区别

    Intel平台上我们现在已经有了LGA775.LGA1366.LGA1156三种封装接口,SNB还会带来两种,包括今天要看到的LGA1155(取代LGA1156),以及明年下半年的高端LGA2011, ...

  3. class int

    class int(object): """ int(x=0) -> integer int(x, base=10) -> integer Convert a ...

  4. CCPC总结

    [印象·南阳] 10月15日出发,威海—烟台—郑州—南阳,一路上欢声笑语,从谁是卧底到各类纸牌游戏,也是欢乐.在从郑州到南阳的车上,对面的好像是河南当地的学长,感叹道工作不易的样子,说还是学生时代最为 ...

  5. effective c++ (二)

    条款04:确定对象使用前已先被初始化 1.由于 c part of c++而且初始化可能导致运行期成本,那么就不保证发生初始化:例如arry是c part of c++的部分从而不能保证初始化,而ST ...

  6. 全代码实现ios-1

    第一次接触ios开发时,就决定用代码开发,而不用ib.因为被ib的各种控件的联线弄得一头雾水,而且ib和storyboard变动太快了. 开始的时候真是麻烦,因为网上关于全代码开发的例子太少了,大多数 ...

  7. 让AllocateHwnd接受一般函数地址作参数

    http://www.xuebuyuan.com/1889769.html Classes单元的AllocateHWnd函数是需要传入一个处理消息的类的方法的作为参数的,原型: function Al ...

  8. iOS 本地企业发布流程

    今天和后台弄了一下本地企业ipa发布, 准备工具:要发布的ipa文件一个,一个plist plist文件格式内容: <?xml version="1.0" encoding= ...

  9. c# 轻量级 ORM 框架 之 Model解析 (四)

    关于orm框架设计,还有必要说的或许就是Model解析了,也是重要的一个环节,在实现上还是相对比较简单的. Model解析,主要用到的技术是反射了,即:把类的属性与表的字段做映射. 把自己的设计及实现 ...

  10. UVALive 4223 Trucking 二分+spfa

    Trucking 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...