MySQL内存使用说明(全局缓存+线程缓存)

首先我们来看一个公式,MySQL中内存分为全局内存和线程内存两大部分(其实并不全部,只是影响比较大的 部分):

per_thread_buffers=(read_buffer_size+read_rnd_buffer_size+sort_buffer_size+thread_stack+join_buffer_size+binlog_cache_size
+tmp_table_size)*max_connections
 
global_buffers=
innodb_buffer_pool_size+innodb_additional_mem_pool_size+innodb_log_buffer_size+key_buffer_size+query_cache_size
 
total_memory=global_buffers+per_thread_buffers
 
全局缓存:
 
key_buffer_size:决定索引处理的速度,尤其是索引读的速度。默认值是16M,通过检查状态值Key_read_requests和Key_reads,可以知道key_buffer_size设置是否合理。比例key_reads / key_read_requests应该尽可能的低,至少是1:100,1:1000更好(上述状态值可以使用'key_read%'获得用来显示状态数据)。key_buffer_size只对MyISAM表起作用。即使你不使用MyISAM表,但是内部的临时磁盘表是MyISAM表,也要使用该值。可以使用检查状态值'created_tmp_disk_tables'得知详情。
 
 
innodb_buffer_pool_size:InnoDB使用该参数指定大小的内存来缓冲数据和索引,这个是Innodb引擎中影响性能最大的参数。
 
 
innodb_additional_mem_pool_size:指定InnoDB用来存储数据字典和其他内部数据结构的内存池大小。缺省值是8M。通常不用太大,只要够用就行,应该与表结构的复杂度有关系。如果不够用,MySQL会在错误日志中写入一条警告信息。
 
 
innodb_log_buffer_size:指定InnoDB用来存储日志数据的缓存大小,如果您的表操作中包含大量并发事务(或大规模事务),并且在事务提交前要求记录日志文件,请尽量调高此项值,以提高日志效率。
 
 
query_cache_size:是MySQL的查询缓冲大小。(从4.0.1开始,MySQL提供了查询缓冲机制)使用查询缓冲,MySQL将SELECT语句和查询结果存放在缓冲区中,今后对于同样的SELECT语句(区分大小写),将直接从缓冲区中读取结果。根据MySQL用户手册,使用查询缓冲最多可以达到238%的效率。通过检查状态值’Qcache_%’,可以知道query_cache_size设置是否合理:如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况,如果Qcache_hits的值也非常大,则表明查询缓冲使用非常频繁,此时需要增加缓冲大小;如果Qcache_hits的值不大,则表明你的查询重复率很低,这种情况下使用查询缓冲反而会影响效率,那么可以考虑不用查询缓冲。此外,在SELECT语句中加入SQL_NO_CACHE可以明确表示不使用查询缓冲。
 
线程缓存
 
每个连接到MySQL服务器的线程都需要有自己的缓冲。大概需要立刻分配256K,甚至在线程空闲时,它们使用默认的线程堆栈,网络缓存等。事务开始之后,则需要增加更多的空间。运行较小的查询可能仅给指定的线程增加少量的内存消耗,然而如果对数据表做复杂的操作例如扫描、排序或者需要临时表,则需分配大约read_buffer_size,sort_buffer_size,read_rnd_buffer_size,tmp_table_size大小的内存空间。不过它们只是在需要的时候才分配,并且在那些操作做完之后就释放了。有的是立刻分配成单独的组块。tmp_table_size 可能高达MySQL所能分配给这个操作的最大内存空间了。
 
read_buffer_size:是MySQL读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySQL会为它分配一段内存缓冲区。read_buffer_size变量控制这一缓冲区的大小。如果对表的顺序扫描请求非常频繁,并且你认为频繁扫描进行得太慢,可以通过增加该变量值以及内存缓冲区大小提高其性能。
 
sort_buffer_size:是MySQL执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让MySQL使用索引而不是额外的排序阶段。如果不能,可以尝试增加sort_buffer_size变量的大小。
 
read_rnd_buffer_size:是MySQL的随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySQL会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySQL会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大。
 
tmp_table_size:是MySQL的临时表缓冲大小。所有联合在一个DML指令内完成,并且大多数联合甚至可以不用临时表即可以完成。大多数临时表是基于内存的(HEAP)表。具有大的记录长度的临时表 (所有列的长度的和)或包含BLOB列的表存储在硬盘上。如果某个内部heap(堆积)表大小超过tmp_table_size,MySQL可以根据需要自动将内存中的heap表改为基于硬盘的MyISAM表。还可以通过设置tmp_table_size选项来增加临时表的大小。也就是说,如果调高该值,MySQL同时将增加heap表的大小,可达到提高联接查询速度的效果。
 
thread_stack :主要用来存放每一个线程自身的标识信息,如线程id,线程运行时基本信息等等,我们可以通过 thread_stack 参数来设置为每一个线程栈分配多大的内存。 
 
join_buffer_size:应用程序经常会出现一些两表(或多表)Join的操作需求,MySQL在完成某些 Join 需求的时候(all/index join),为了减少参与Join的“被驱动表”的读取次数以提高性能,需要使用到 Join Buffer 来协助完成 Join操作。当 Join Buffer 太小,MySQL 不会将该 Buffer 存入磁盘文件,而是先将Join Buffer中的结果集与需要 Join 的表进行 Join 操作,然后清空 Join Buffer 中的数据,继续将剩余的结果集写入此 Buffer 中,如此往复。这势必会造成被驱动表需要被多次读取,成倍增加 IO 访问,降低效率。
 
binlog_cache_size:在事务过程中容纳二进制日志SQL 语句的缓存大小。二进制日志缓存是服务器支持事务存储引擎并且服务器启用了二进制日志(—log-bin 选项)的前提下为每个客户端分配的内存,注意,是每个Client 都可以分配设置大小的binlog cache 空间。如果系统中经常会出现多语句事务的话,可以尝试增加该值的大小,以获得更好的性能。当然,我们可以通过MySQL 的以下两个状态变量来判断当前的binlog_cache_size 的状况:Binlog_cache_use 和Binlog_cache_disk_use。“max_binlog_cache_size”:和"binlog_cache_size"相对应,但是所代表的是binlog 能够使用的最大cache 内存大小。当我们执行多语句事务的时候,max_binlog_cache_size 如果不够大的话,系统可能会报出“ Multi-statement transaction required more than 'max_binlog_cache_size' bytes ofstorage”的错误。
 
其中需要注意的是:table_cache表示的是所有线程打开的表的数目,和内存无关。

MySQL内存----使用说明全局缓存+线程缓存) 转的更多相关文章

  1. MySQL内存使用分析

    转自: http://www.jb51.net/article/38936.htm 本篇文章是对MySQL内存的使用说明(全局缓存+线程缓存)进行了详细的分析介绍,需要的朋友参考下    首先我们来看 ...

  2. MySQL中内存分为全局内存和线程内存

    首先我们来看一个公式,MySQL中内存分为全局内存和线程内存两大部分(其实并不全部,只是影响比较大的 部分): 复制代码 代码如下: per_thread_buffers=(read_buffer_s ...

  3. MYSQL内存--------启动mysql缓存机制,实现命中率100% 转

    虽然这个标题夸张得过了头,但此文很完整,值得学习.转自 http://www.yy520.net/read.php?278 myql优化,启动MySQL缓存机制,实现命中率100% 配置你的mysql ...

  4. mysql线程缓存和表缓存

    一.线程缓存1.thread_cache_size定义了线程缓冲中的数量.每个缓存中的线程通常消耗256kb内存2.Threads_cached,可以看到已经建立的线程二.表缓存(table_cach ...

  5. 《MySQL面试小抄》查询缓存机制终面

    <MySQL面试小抄>查询缓存机制终面 我是肥哥,一名不专业的面试官! 我是囧囧,一名积极找工作的小菜鸟! 囧囧表示:小白面试最怕的就是面试官问的知识点太笼统,自己无法快速定位到关键问题点 ...

  6. MySQL性能优化方法一:缓存参数优化

    原文链接:http://isky000.com/database/mysql-perfornamce-tuning-cache-parameter 数据库属于 IO 密集型的应用程序,其主要职责就是数 ...

  7. MySQL具体解释(21)------------缓存參数优化

    数据库属于 IO 密集型的应用程序.其主要职责就是数据的管理及存储工作. 而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所以,要优 ...

  8. (CSDN 迁移) JAVA多线程实现-可回收缓存线程池(newCachedThreadPool)

    在前两篇博客中介绍了单线程化线程池(newSingleThreadExecutor).可控最大并发数线程池(newFixedThreadPool).下面介绍的是第三种newCachedThreadPo ...

  9. 阿里开源支持缓存线程池的ThreadLocal Transmittable ThreadLocal(TTL)

    功能 在使用线程池等会缓存线程的组件情况下,提供ThreadLocal值的传递功能. JDK的InheritableThreadLocal类可以完成父子线程值的传递. 但对于使用线程池等会缓存线程的组 ...

随机推荐

  1. python 常用模块

    1.os模块 os模块包装了不同操作系统的通用接口,使用户在不同操作系统下,可以使用相同的函数接口,返回相同结构的结果. os.name:返回当前操作系统名称('posix', 'nt', 'os2' ...

  2. Linux下用Intel编译器编译安装NetCDF-Fortan库(4.2以后版本)

    本来这个问题真的没必要写的,可是真的困扰我太久%>_<%,决定还是记录一下. 首先,最权威清晰的安装文档还是官方的: Building the NetCDF-4.2 and later F ...

  3. nodejs 5.2.0文档自翻译——HTTP模块

    HTTP Class: http.Agent new Agent([options]) agent.destroy() agent.freeSockets agent.getName(options) ...

  4. public, protected, private, internal, protected internal简析

    public是可访问权限最高的,比如姓名,每个人都可以知道别人的姓名,这个不是什么秘密 protected的访问权限要低些,只有子类才可以访问得到父类的protected属性.就好像老子的财产只有儿子 ...

  5. 第二百五十三、四、五天 how can I 坚持

    出去玩了几天,好累啊. 周五,坐了半天车.到了西柏坡,下午撕名牌,好疯狂啊,最终还是以有人受伤为代价结束了战斗.晚上吃蛋糕.水饺,还有面条,就是我的奖品没拿到.哎.. 周六,上午滑雪,两年没滑了,都忘 ...

  6. 集群——LVS理论(转)

    原文:http://caduke.blog.51cto.com/3365689/1544229 当单个服务器性能 不能满足日益增多访问流量时,服务器的扩展策略: Scale Up :向上扩展,提升单个 ...

  7. sizeof 字符数组

    比较 #include <stdio.h> #include <string.h> int main(int argc, const char *argv[]) { char ...

  8. 【转】关于Xcode的Other Linker Flags

    链接器 首先,要说明一下Other Linker Flags到底是用来干嘛的.说白了,就是ld命令除了默认参数外的其他参数.ld命令实现的是链接器的工作,详细说明可以在终端man ld查看. 如果有人 ...

  9. Javascript/Jquery——简单定时器的多种实现方法

    第一种方法: <script language="javascript"> //使用setInterval间歇调用 (不建议使用该方法) $(function(){ s ...

  10. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...