csu 1804 有向无环图
分析:从复杂度来看,一定不可能是枚举i和j来计算。1e5的规模来看,应该是O(N)复杂度比较合适。
我是这么想的,对于三个点,假设1->2有a种走法,2->3有b种走法。那么1->3应该有a*b种走法,所以图中父亲节点一定是可以通过儿子节点的权值递推得到的。有了这个想法,那么O(N)完成这道题应该就不是梦想了。
我开了val数组,val[j]表示从j点出发的∑kcount(j,k)∗b[k],那么假设i能通向j, 那么val[i]应该等于a[i]∗count(i,j)∗val[j]+a[i]∗count(i,j)∗b[j]。把count(i,j)拆分到每次遍历的边里就行了,这样只需要加法就行了。只要每次从一个没有遍历过的点开始dfs就可以了。
代码:
/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define offcin ios::sync_with_stdio(false)
#define sigma_size 26
#define lson l,m,v<<1
#define rson m+1,r,v<<1|1
#define slch v<<1
#define srch v<<1|1
#define sgetmid int m = (l+r)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define pb push_back
#define fi first
#define se second
const int INF = 0x3f3f3f3f;
const LL INFF = 1e18;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-9;
const LL mod = 1e9+7;
const int maxmat = 10;
const ull BASE = 31;
/*****************************************************/
const int maxn = 1e5 + 5;
std::vector<int> G[maxn];
int a[maxn], b[maxn];
int val[maxn];
bool vis[maxn];
LL ans;
void dfs(int u) {
vis[u] = true;
val[u] = b[u];
for (int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if (!vis[v]) dfs(v);
val[u] = (val[v] + val[u]) % mod;
ans = (ans + (LL)a[u] * val[v] % mod) % mod;
}
}
int main(int argc, char const *argv[]) {
int N, M;
while (~scanf("%d%d", &N, &M)) {
ans = 0;
for (int i = 0; i <= N; i ++) G[i].clear();
mem(val, 0); mem(vis, false); mem(a, 0); mem(b, 0);
for (int i = 1; i <= N; i ++) scanf("%d%d", a + i, b + i);
for (int i = 0; i < M; i ++) {
int u, v;
scanf("%d%d", &u, &v);
G[u].pb(v);
}
for (int i = 1; i <= N; i ++)
if (!vis[i]) dfs(i);
cout<<ans<<endl;
}
return 0;
}
csu 1804 有向无环图的更多相关文章
- CSU 1804: 有向无环图 拓扑排序 图论
1804: 有向无环图 Submit Page Summary Time Limit: 5 Sec Memory Limit: 128 Mb Submitted: 716 ...
- CSU 1804 - 有向无环图 - [(类似于)树形DP]
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 ...
- CSU 1804: 有向无环图(拓扑排序)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在 ...
- 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...
- csu oj 1804: 有向无环图 (dfs回溯)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. //#pragma ...
- 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP
1804: 有向无环图 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 187 Solved: 80[Submit][Status][Web Board ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- JavaScript + SVG实现Web前端WorkFlow工作流DAG有向无环图
一.效果图展示及说明 (图一) (图二) 附注说明: 1. 图例都是DAG有向无环图的展现效果.两张图的区别为第二张图包含了多个分段关系.放置展示图片效果主要是为了说明该例子支持多段关系的展现(当前也 ...
- javascript实现有向无环图中任意两点最短路径的dijistra算法
有向无环图 一个无环的有向图称做有向无环图(directed acycline praph).简称DAG 图.DAG 图是一类较有向树更一般的特殊有向图, dijistra算法 摘自 http://w ...
随机推荐
- 【Unity3D基础】让物体动起来②--UGUI鼠标点击逐帧移动
背景 上一篇通过鼠标移动的代码很简单,所以看的人也不多,但是还是要感谢“武装三藏”在博客园给出的评论和支持,希望他也能看到第二篇,其实可以很简单,而且是精灵自控制,关键是代码少是我喜欢的方式,也再次印 ...
- JAVA的网络编程
网络编程 网络编程对于很多的初学者来说,都是很向往的一种编程技能,但是很多的初学者却因为很长一段时间无法进入网络编程的大门而放弃了对于该部分技术的学习. 在 学习网络编程以前,很多初学者可能觉得网络编 ...
- windows系统调用 利用事件对象实现进程通信
#include "iostream" #include "windows.h" #include "cstring" using name ...
- Normalize.css 与 reset.css
Normalize.css 与 reset.css都是初始化页面样式 不同点在于 reset.css更加粗暴,直接把所有的样式全部初始化了: Normalize.css还剩点良心,还保留了一些浏览器默 ...
- Java 可变参数列表
1.可变参数列表的简单实现 当调用方法时,方法的参数个数或类型未知时,称其为可变参数列表.在以前的Java代码中,可以使用Object数组来实现这样的功能.因为,所有的类都是直接或间接继承于Objec ...
- TCMalloc的使用
Windows下: 1. 编译libtcmalloc_minimal,编成静态的动态的都可以. 2. 在链接中设置附加依赖库libtcmalloc_minimal.lib,并且强制符号引用要加上__t ...
- Weblogic 所有BEA错误代码详细信息列表
范围 子系统 类别 BEA-000001 – BEA-009999 ConsensusLeasing DatabaseLessLeasing DatabaseLessLeasing BEA-00010 ...
- centos7忘记root密码修改方式
1.在进入系统选择时按下e键
- 《R语言实战》读书笔记-- 第六章 基本图形
首先写第二部分的前言. 第二部分用来介绍获取数据基本信息的图形技术和统计方法. 本章主要内容 条形图.箱型图.点图 饼图和扇形图 直方图和核密度图 分析数据第一步就是要观察它,用可视化的方式是最好的. ...
- MVC中Razor的使用 及路径问题
语法: @ 可以编写一条C#语句@{} 可以编写一组C#语句@: 将文字内容直接输出到页面上去@() 在一句中将一段C#代码包括起来,证明这一句完整的C#代码 引用命名空间:@using 空间名称 H ...