POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
- Line 1: Contains the integer k.
- Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
题目大意:给k个线性同余方程,求这些方程的公共解。
附思路:http://blog.csdn.net/orpinex/article/details/6972654
思路:考虑两个方程的情况
ans = r1(mod a1)
ans = r2(mod a2)①
存在k1使得ans = r1 + k1 * a1
把ans代入①得:r1 + k1 * a1 = r2(mod a2)
k1 * a1 = r2 - r1(mod a2)
存在k2使得k1 * a1 - k2 * a2 = r2 - r1
利用拓展欧几里得求出k1(为了得到最小的非负整数k1,可以让k1 = k1 mod (a2/gcd(a1, a2)))
那么令ans = r1 + k1 * a1
对于多个方程的情况,两个两个地联立解,new_r = ans = r1 + k1 * a1, new_a = lcm(a1, a2)
解析:
关于为了让k1最小要k1 = k1 mod (a2/gcd(a1, a2))。令d = gcd(a1, a2),a1'= a1 / d,a2' = a2 / d ,r' = (r2 - r1) / d,对方程k1 * a1 - k2 * a2 = r2 - r1,两边同时除以d得k1 * a1' - k2 * a2' = r',即k1 * a1' = r' (mod a2'),对于任意解k1 = x',有通解x = x' + a2' = x' + a2 / gcd(a1, a2)。则最小的k1 = (x' + a2 / gcd(a1, a2)) mod (a2 / gcd(a1, a2) = x' mod (a2 / gcd(a1, a2))
关于new_a = lcm(a1, a2)。考虑方程x * a = y * b,两边同时除以gcd(a, b),得到x * a' = y * b',x / y = b' / a',那么有x = kb',y = ka',k∈Z。那么使得方程x * a = y * b成立的x * a = k * b' * a = k * lcm(a, b)。容易想象,p + ax = q + by的每个合理的p + ax的差为lcm(a, b)。即对于方程r1(mod a1) = r2(mod a2)的解也是隔lcm(a1, a2)就出现一个解,即new_a = lcm(a1, a2)。
代码(16MS):
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL; void exgcd(LL a, LL b, LL &d, LL &x, LL &y) {
if(!b) d = a, x = , y = ;
else {
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main() {
LL k, a1, a2, r1, r2;
while(scanf("%I64d", &k) != EOF) {
bool flag = true;
scanf("%I64d%I64d", &a1, &r1);
for(int i = ; i < k; ++i) {
scanf("%I64d%I64d", &a2, &r2);
if(!flag) continue;
LL r = r2 - r1, d, k1, k2;
exgcd(a1, a2, d, k1, k2);
if(r % d) flag = false;
LL t = a2 / d;
k1 = (r / d * k1 % t + t) % t;
r1 = r1 + a1 * k1;
a1 = a1 / d * a2;
}
printf("%I64d\n", flag ? r1 : -);
}
}
POJ 2891 Strange Way to Express Integers(拓展欧几里得)的更多相关文章
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- poj——2891 Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 16839 ...
- [POJ 2891] Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 10907 ...
- poj 2891 Strange Way to Express Integers(中国剩余定理)
http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法
http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...
- [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)
题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...
- POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...
- POJ 2891 Strange Way to Express Integers(中国剩余定理)
题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...
随机推荐
- php 安装memcacheq
berkeley: http://download.oracle.com/otn/berkeley-db/db-6.1.19.tar.gz?AuthParam=1408431634_4887d4468 ...
- 在DataGridView控件中加入ComboBox下拉列表框的实现
在DataGridView控件中加入ComboBox下拉列表框的实现 转自:http://www.cnblogs.com/luqingfei/archive/2007/03/28/691372.htm ...
- NodeJS学习笔记之Connect中间件模块(一)
NodeJS学习笔记之Connect中间件模块(一) http://www.jb51.net/article/60430.htm NodeJS学习笔记之Connect中间件模块(二) http://w ...
- Node.js 手册查询-3-Mongoose 方法
Mongoose 参考手册 标签(空格分隔): MongoDB Mongoose 是什么? 一般我们不直接用MongoDB的函数来操作MongoDB数据库 Mongose就是一套操作MongoDB数据 ...
- java判断文件是否存在
1.判断远程服务器上文件 import java.net.HttpURLConnection; import java.net.URL; public boolean checkRemoteFile( ...
- Node.js执行存储过程
直接上代码 var sql = require('mssql'); var config = { user: 'sa', password: '123456', server: ...
- 李洪强经典面试题136-KVO-KVC
李洪强经典面试题136-KVO-KVC KVC-KVO KVC的底层实现? 当一个对象调用setValue方法时,方法内部会做以下操作: ①检查是否存在相应key的set方法,如果存在,就调用se ...
- 关于JS的算法
一.快速排序 function qSort(arr) { if(arr.length === 0) { return []; } var left = []; var right = []; var ...
- php获取真实IP地址
function user_realip() { if (getenv('HTTP_CLIENT_IP')) { $ip = getenv('HTTP_CLIENT_IP'); } elseif (g ...
- NLP用CNN分类Mnist,提取出来的特征训练SVM及Keras的使用(demo)
用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html /DeepLearning Tutorials/keras_usage 提取出来的特征 ...