[问题2014S11]  设 \(A,B\) 为 \(n\) 阶实对称阵, \(p(A),p(B),p(A+B)\) 分别为 \(A,B,A+B\) 的正惯性指数, 证明: \[p(A)+p(B)\geq p(A+B).\]

[问题2014S11] 复旦高等代数II(13级)每周一题(第十一教学周)的更多相关文章

  1. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  2. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  3. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  4. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  5. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  6. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  7. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  8. [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

    [问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线 ...

  9. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

随机推荐

  1. 20145334 第五次 java 实验报告

    实验内容 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 我和20145306张文锦组队编程 http://www.cnblogs.com/besti145306/ ...

  2. VC++6.0编译器标记的那些内存值

    栈内存初始值 0xcccccccc 和-858993460.   二者是一样的, 一个是16进制, 另一个是10进制

  3. iOS9 HTTP传输安全

    1.在Info.plist中添加 NSAppTransportSecurity 类型  Dictionary 2.在 NSAppTransportSecurity 下添加 NSAllowsArbitr ...

  4. window dos命名

    dos命令从c盘进入d盘c:\>d:敲回车 >dir 查看文件夹中文件运行java程序,最好先进入文件夹:然后javac Hello.javajava Hello

  5. 数据库---MySQL练习题及答案

    一.            设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表( ...

  6. 【iCore3 双核心板_FPGA】实验十六:基于SPI总线的ARM与FPGA通信实验

    实验指导书及代码包下载: http://pan.baidu.com/s/1hs6lDdi iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  7. java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  8. Jmeter工作原理

  9. Nginx执行php显示no input file specified的处理方法

    /var/www/nginx-default中放上一份phpinfo.php,使用http://localhost/phpinfo.info 访问,结果报错,显示 “No input file spe ...

  10. 【转】Linux下怎样检查、如何查看某软件包是否已经安装?

    因为linux安装软件的方式比较多,所以没有一个通用的办法能查到某些软件是否安装了.总结起来就是这样几类: 1.rpm包安装的,可以用rpm -qa看到,如果要查找某软件包是否安装,用 rpm -qa ...