利用统计学知识为android应用的启动时间做数据分析
[声明:如需转载本文,请注明来源]
一.数据说明
启动时间用同一台设备,同一个包进行启动时间的测试,其中三组样本数据(每组100份对比数据)如下:
- 设备pro-5-1
- base_list_1 = [0.944, 0.901, 0.957, 0.911, 1.189, 0.93, 0.94, 0.932, 0.951, 0.911, 0.934, 0.903, 0.922, 0.917, 0.931, 0.962, 0.945, 1.254, 0.918, 0.913, 0.931, 0.935, 0.89, 0.948, 0.932, 0.931, 0.875, 0.96, 1.117, 0.905, 0.955, 0.914, 0.95, 0.933, 0.941, 0.905, 0.919, 1.124, 0.953, 0.918, 0.942, 0.918, 0.914, 0.907, 0.942, 0.907, 0.895, 0.917, 0.927, 0.908, 0.915, 0.914, 0.945, 0.933, 0.894, 0.958, 0.885, 0.971, 0.94, 1.261, 0.949, 0.922, 1.009, 0.941, 0.942, 0.907, 0.913, 0.874, 0.963, 0.951, 0.972, 0.94, 0.952, 0.941, 0.954, 0.914, 0.951, 0.899, 0.908, 0.945, 0.934, 0.922, 0.92, 0.959, 0.946, 0.892, 0.847, 0.96, 0.973, 0.928, 0.913, 0.935, 0.939, 0.967, 0.907, 0.94, 0.927, 0.88, 1.004, 0.986]
- cmp_list_1 = [0.931, 0.947, 0.965, 0.912, 0.966, 0.974, 0.97, 0.971, 0.958, 0.938, 0.949, 0.972, 0.946, 0.915, 0.906, 0.926, 0.955, 0.93, 0.931, 0.979, 0.952, 1.062, 0.921, 1.002, 0.927, 0.942, 0.991, 0.898, 1.121, 1.006, 0.941, 0.953, 1.013, 0.979, 0.997, 0.961, 0.947, 0.96, 0.966, 0.917, 1.002, 0.955, 0.946, 0.99, 0.945, 0.911, 0.923, 0.94, 0.933, 0.954, 0.907, 0.961, 0.937, 0.941, 0.897, 0.954, 0.979, 0.927, 0.957, 0.944, 0.961, 0.924, 0.953, 0.954, 0.929, 0.926, 0.965, 0.95, 0.964, 0.895, 0.921, 0.945, 0.955, 0.96, 0.962, 0.907, 0.933, 0.955, 0.921, 0.959, 0.934, 0.973, 0.977, 0.938, 0.945, 0.949, 0.932, 0.976, 0.947, 0.941, 0.898, 0.942, 0.887, 0.963, 0.931, 0.999, 0.915, 0.947, 0.958, 0.988]
- 设备pro-5-2
- base_list_2 = [0.887, 0.926, 0.931, 0.918, 0.905, 0.896, 0.889, 0.922, 0.923, 0.919, 0.927, 0.904, 0.927, 1.039, 0.933, 1.209, 0.935, 0.882, 0.947, 0.914, 0.871, 0.924, 0.922, 0.943, 0.902, 0.938, 0.896, 0.906, 0.939, 0.899, 0.934, 0.923, 0.927, 0.911, 0.943, 0.886, 0.844, 0.913, 0.907, 0.954, 0.934, 0.854, 0.953, 0.903, 0.931, 0.838, 0.936, 0.955, 0.943, 0.933, 0.901, 1.18, 0.907, 0.883, 0.885, 0.909, 0.94, 0.939, 0.889, 0.917, 0.933, 0.904, 0.888, 0.953, 0.936, 0.947, 0.927, 0.881, 0.914, 0.937, 0.898, 0.914, 0.929, 0.945, 0.935, 0.902, 0.939, 0.925, 0.909, 0.903, 0.92, 0.917, 0.987, 0.911, 0.889, 0.888, 0.91, 0.941, 0.904, 0.911, 0.908, 0.793, 1.113, 0.947, 0.876, 0.908, 0.91, 0.921, 0.941, 0.987]
- cmp_list_1 = [0.929, 0.94, 0.931, 0.978, 0.965, 0.938, 0.941, 0.937, 0.91, 0.92, 0.934, 0.92, 0.981, 0.939, 0.928, 0.95, 0.94, 0.928, 0.925, 0.933, 0.963, 0.954, 0.987, 0.965, 0.96, 0.94, 0.966, 0.96, 0.942, 0.969, 0.978, 0.964, 0.921, 0.964, 0.939, 0.97, 0.961, 0.945, 1.004, 0.951, 0.916, 0.942, 0.955, 0.975, 0.947, 0.917, 0.944, 0.943, 0.905, 0.955, 0.96, 0.994, 0.925, 0.922, 0.958, 0.957, 0.958, 0.907, 0.981, 0.937, 0.959, 0.919, 0.959, 0.932, 0.951, 0.927, 0.949, 0.949, 0.944, 0.913, 0.967, 0.981, 0.942, 0.949, 0.932, 0.933, 0.97, 0.931, 0.918, 0.972, 0.95, 0.962, 0.988, 1.0, 1.003, 0.949, 0.933, 0.955, 0.934, 0.952, 0.937, 0.977, 0.936, 0.991, 0.986, 0.943, 0.997, 0.975, 0.991, 0.984]
- 设备mx4-pro
- base_list_1 = [1.359, 1.415, 1.395, 1.318, 1.345, 1.417, 1.36, 1.373, 1.337, 1.332, 1.498, 1.318, 1.392, 1.364, 1.397, 1.793, 1.341, 1.364, 1.428, 1.345, 1.418, 1.364, 1.372, 1.541, 1.465, 1.373, 1.337, 1.52, 1.375, 1.367, 1.366, 1.347, 1.334, 1.422, 1.354, 1.369, 1.413, 1.345, 1.373, 1.363, 1.464, 1.344, 1.324, 1.331, 1.405, 1.355, 1.674, 1.38, 1.352, 1.339, 1.326, 1.362, 1.431, 1.774, 1.312, 1.292, 1.384, 1.473, 1.337, 1.406, 1.412, 1.385, 1.292, 1.384, 1.342, 1.333, 1.435, 1.372, 1.42, 1.315, 1.344, 1.414, 1.51, 1.334, 1.308, 1.468, 1.401, 1.316, 1.373, 1.407, 1.474, 1.382, 1.346, 1.373, 1.366, 1.378, 1.315, 1.417, 1.431, 1.379, 1.324, 1.383, 1.349, 1.4, 1.327, 1.734, 1.395, 1.412, 1.438, 1.384]
- cmp_list_1 = [1.414, 1.326, 1.421, 1.371, 1.363, 1.36, 1.417, 1.34, 1.357, 1.429, 1.308, 1.324, 1.351, 1.323, 1.367, 1.412, 1.391, 1.661, 1.34, 1.38, 1.528, 1.417, 1.352, 1.569, 1.32, 1.473, 1.531, 1.445, 1.407, 1.529, 1.356, 1.349, 1.362, 1.358, 1.375, 1.365, 1.317, 1.302, 1.342, 1.351, 1.393, 1.473, 1.392, 1.299, 1.367, 1.381, 1.354, 1.374, 1.551, 1.448, 1.387, 1.361, 1.358, 1.362, 1.568, 1.343, 1.334, 1.378, 1.417, 1.382, 1.421, 1.345, 1.336, 1.302, 1.349, 1.381, 1.374, 1.359, 1.38, 1.553, 1.34, 1.269, 1.353, 1.329, 1.649, 1.392, 1.367, 1.377, 1.403, 1.361, 1.352, 1.466, 1.389, 1.346, 1.345, 1.35, 1.383, 1.446, 1.613, 1.395, 1.402, 1.394, 1.348, 1.353, 1.395, 1.345, 1.274, 1.425, 1.351, 1.586]
二.正态性检验(采用spss)
进行正态性检验的目的是为了验证我们的测试数据样本是不是符合正态分布(近似),而且下面的统计学利用是需要在正态分布下进行的,因此,进行正态性检验是必备的。下列图对应的是区域内的频数统计
因为是同一台设备的同一个场景,因此可知左右两边的分布应该是近似一致的。通过观察Q-Q图与Q-Q去势图可以断定,我们的启动时间是符合正态分布的。但需要注意的是,base_list_2跟cmp_list_2的分布,方差明显差很多,可以看出数据分布更加零散(基本可以断定第二组数据是不能拿来作为对比的),而其他几组几乎是同形状的分布。
三.显著性检验
方差齐性检验的目的是为了检验两组数据两两对比的差异,从而判断两组数据的数据来源分布是否一致。能否通过方差齐性检验,是我们能否采用这组数据作为对比数据的前提标准。
判断脚本如下
- #coding:utf-8
- import MySQLdb
- import json
- import numpy as np
- from scipy.stats import levene
- import threading
- import matplotlib.pyplot as plt
- import matplotlib.mlab as mlab
- class DBOperate(object):
- def __init__(self, host, user, db, passwd, port):
- self.host = host
- self.user = user
- self.db = db
- self.passwd = passwd
- self.port = port
- self.conn = MySQLdb.connect(
- host = self.host,
- user = self.user,
- passwd = self.passwd,
- db = self.db,
- port = self.port)
- self.cur = self.conn.cursor()
- def execute(self,sql):
- try:
- self.cur.execute(sql)
- self.conn.commit()
- print "======sql执行成功: ",sql
- except Exception as e:
- print e
- def getData(self,sql):
- try:
- self.cur.execute(sql)
- result = self.cur.fetchall()
- return result
- except Exception as e:
- print e
- def close(self):
- self.cur.close()
- self.conn.close()
- class MathTools(object):
- def __init__(self,base_data,cmp_data):
- self.base_data = base_data
- self.cmp_data = cmp_data
- def testVar(self):
- '''方差齐性检验
- '''
- result = levene(self.base_data,self.cmp_data)
- print result
- if float(result[1]) > 0.05:
- print "方差齐性检验通过,可以认为方差相等(说明硬件或者执行时间不同可能带来的误差可以忽略)!"
- def getMeanAndVar(self):
- '''获取样本均值跟方差
- '''
- for each in [self.base_data,self.cmp_data]:
- mean = np.mean(each)
- var = np.var(each)
- std = np.std(each)
- print "==================="
- print "均值:",mean
- print "方差:",var
- print "标准差:",std
- print "==================="
- return mean,var,std
- def drawPlot(avg,std):
- x = np.linspace(0.5,1.5,10000)
- plt.plot(x,mlab.normpdf(x,avg,std))
- plt.show()
- def dataAnalysis(tuple_data):
- avg_list = []
- for each_tuple in tuple_data:
- str_data = each_tuple[0]
- dic_data = json.loads(str_data)
- avg_time = float(dic_data['intervalStartTime'])
- avg_list.append(avg_time)
- return avg_list
- def outputData(dboperate,task_id_1,task_id_2):
- data_base = dboperate.getData('''SELECT start_time_log from uctc_qms_start_time WHERE task_id=%s'''%task_id_1)
- data_cmp = dboperate.getData('''SELECT start_time_log from uctc_qms_start_time WHERE task_id=%s'''%task_id_2)
- base_list = dataAnalysis(data_base)
- cmp_list = dataAnalysis(data_cmp)
- return base_list,cmp_list
- def main():
- dboperate = DBOperate(
- host="xxxx",
- user="xxxx",
- passwd="xxxx",
- db="xxxx",
- port=3306)
- base_list_1,cmp_list_1 = outputData(dboperate,216674,216675)
- print "base_list_1:\n",base_list_1
- print "cmp_list_1:\n",cmp_list_1
- mt = MathTools(base_list_1,cmp_list_1)
- mt.testVar()
- avg_list = mt.getMeanAndVar()
- base_list_2,cmp_list_2 = outputData(dboperate,216679,216680)
- print "base_list_2:\n",base_list_2
- print "cmp_list_2:\n",cmp_list_2
- mt2 = MathTools(base_list_2,cmp_list_2)
- mt2.testVar()
- mt2.getMeanAndVar()
- base_list_3,cmp_list_3 = outputData(dboperate,216677,216682)
- print "base_list_1:\n",base_list_3
- print "cmp_list_1:\n",cmp_list_3
- mt3 = MathTools(base_list_3,cmp_list_3)
- mt3.testVar()
- mt3.getMeanAndVar()
- dboperate.close()
- if __name__ == '__main__':
- main()
分别对三组数据做方差齐性检验发现第二组数据没有通过方差齐性检验,第二组数据中base_list_2跟cmp_list_2存在显著性差异,由于我们的测试是用了同一设备的同一个包进行同一种测试,因此可以断定第二组数据必须过滤掉。
- base_list_1:
- [0.944, 0.901, 0.957, 0.911, 1.189, 0.93, 0.94, 0.932, 0.951, 0.911, 0.934, 0.903, 0.922, 0.917, 0.931, 0.962, 0.945, 1.254, 0.918, 0.913, 0.931, 0.935, 0.89, 0.948, 0.932, 0.931, 0.875, 0.96, 1.117, 0.905, 0.955, 0.914, 0.95, 0.933, 0.941, 0.905, 0.919, 1.124, 0.953, 0.918, 0.942, 0.918, 0.914, 0.907, 0.942, 0.907, 0.895, 0.917, 0.927, 0.908, 0.915, 0.914, 0.945, 0.933, 0.894, 0.958, 0.885, 0.971, 0.94, 1.261, 0.949, 0.922, 1.009, 0.941, 0.942, 0.907, 0.913, 0.874, 0.963, 0.951, 0.972, 0.94, 0.952, 0.941, 0.954, 0.914, 0.951, 0.899, 0.908, 0.945, 0.934, 0.922, 0.92, 0.959, 0.946, 0.892, 0.847, 0.96, 0.973, 0.928, 0.913, 0.935, 0.939, 0.967, 0.907, 0.94, 0.927, 0.88, 1.004, 0.986]
- cmp_list_1:
- [0.931, 0.947, 0.965, 0.912, 0.966, 0.974, 0.97, 0.971, 0.958, 0.938, 0.949, 0.972, 0.946, 0.915, 0.906, 0.926, 0.955, 0.93, 0.931, 0.979, 0.952, 1.062, 0.921, 1.002, 0.927, 0.942, 0.991, 0.898, 1.121, 1.006, 0.941, 0.953, 1.013, 0.979, 0.997, 0.961, 0.947, 0.96, 0.966, 0.917, 1.002, 0.955, 0.946, 0.99, 0.945, 0.911, 0.923, 0.94, 0.933, 0.954, 0.907, 0.961, 0.937, 0.941, 0.897, 0.954, 0.979, 0.927, 0.957, 0.944, 0.961, 0.924, 0.953, 0.954, 0.929, 0.926, 0.965, 0.95, 0.964, 0.895, 0.921, 0.945, 0.955, 0.96, 0.962, 0.907, 0.933, 0.955, 0.921, 0.959, 0.934, 0.973, 0.977, 0.938, 0.945, 0.949, 0.932, 0.976, 0.947, 0.941, 0.898, 0.942, 0.887, 0.963, 0.931, 0.999, 0.915, 0.947, 0.958, 0.988]
- (2.585452271112739, 0.10944298973519527)
- 方差齐性检验通过,可以认为方差相等(说明硬件或者执行时间不同可能带来的误差可以忽略)!
- ===================
- 均值: 0.9432
- 方差: 0.00405766
- 标准差: 0.0636997645208
- ===================
- ===================
- 均值: 0.95079
- 方差: 0.0011006859
- 标准差: 0.0331765866237
- ===================
- base_list_2:
- [0.887, 0.926, 0.931, 0.918, 0.905, 0.896, 0.889, 0.922, 0.923, 0.919, 0.927, 0.904, 0.927, 1.039, 0.933, 1.209, 0.935, 0.882, 0.947, 0.914, 0.871, 0.924, 0.922, 0.943, 0.902, 0.938, 0.896, 0.906, 0.939, 0.899, 0.934, 0.923, 0.927, 0.911, 0.943, 0.886, 0.844, 0.913, 0.907, 0.954, 0.934, 0.854, 0.953, 0.903, 0.931, 0.838, 0.936, 0.955, 0.943, 0.933, 0.901, 1.18, 0.907, 0.883, 0.885, 0.909, 0.94, 0.939, 0.889, 0.917, 0.933, 0.904, 0.888, 0.953, 0.936, 0.947, 0.927, 0.881, 0.914, 0.937, 0.898, 0.914, 0.929, 0.945, 0.935, 0.902, 0.939, 0.925, 0.909, 0.903, 0.92, 0.917, 0.987, 0.911, 0.889, 0.888, 0.91, 0.941, 0.904, 0.911, 0.908, 0.793, 1.113, 0.947, 0.876, 0.908, 0.91, 0.921, 0.941, 0.987]
- cmp_list_2:
- [0.929, 0.94, 0.931, 0.978, 0.965, 0.938, 0.941, 0.937, 0.91, 0.92, 0.934, 0.92, 0.981, 0.939, 0.928, 0.95, 0.94, 0.928, 0.925, 0.933, 0.963, 0.954, 0.987, 0.965, 0.96, 0.94, 0.966, 0.96, 0.942, 0.969, 0.978, 0.964, 0.921, 0.964, 0.939, 0.97, 0.961, 0.945, 1.004, 0.951, 0.916, 0.942, 0.955, 0.975, 0.947, 0.917, 0.944, 0.943, 0.905, 0.955, 0.96, 0.994, 0.925, 0.922, 0.958, 0.957, 0.958, 0.907, 0.981, 0.937, 0.959, 0.919, 0.959, 0.932, 0.951, 0.927, 0.949, 0.949, 0.944, 0.913, 0.967, 0.981, 0.942, 0.949, 0.932, 0.933, 0.97, 0.931, 0.918, 0.972, 0.95, 0.962, 0.988, 1.0, 1.003, 0.949, 0.933, 0.955, 0.934, 0.952, 0.937, 0.977, 0.936, 0.991, 0.986, 0.943, 0.997, 0.975, 0.991, 0.984]
- (4.5987224867656273, 0.0332145312054625)
- ===================
- 均值: 0.92446
- 方差: 0.0028034084
- 标准差: 0.0529472227789
- ===================
- ===================
- 均值: 0.95108
- 方差: 0.0005381736
- 标准差: 0.0231985689214
- ===================
- base_list_3:
- [1.359, 1.415, 1.395, 1.318, 1.345, 1.417, 1.36, 1.373, 1.337, 1.332, 1.498, 1.318, 1.392, 1.364, 1.397, 1.793, 1.341, 1.364, 1.428, 1.345, 1.418, 1.364, 1.372, 1.541, 1.465, 1.373, 1.337, 1.52, 1.375, 1.367, 1.366, 1.347, 1.334, 1.422, 1.354, 1.369, 1.413, 1.345, 1.373, 1.363, 1.464, 1.344, 1.324, 1.331, 1.405, 1.355, 1.674, 1.38, 1.352, 1.339, 1.326, 1.362, 1.431, 1.774, 1.312, 1.292, 1.384, 1.473, 1.337, 1.406, 1.412, 1.385, 1.292, 1.384, 1.342, 1.333, 1.435, 1.372, 1.42, 1.315, 1.344, 1.414, 1.51, 1.334, 1.308, 1.468, 1.401, 1.316, 1.373, 1.407, 1.474, 1.382, 1.346, 1.373, 1.366, 1.378, 1.315, 1.417, 1.431, 1.379, 1.324, 1.383, 1.349, 1.4, 1.327, 1.734, 1.395, 1.412, 1.438, 1.384]
- cmp_list_3:
- [1.414, 1.326, 1.421, 1.371, 1.363, 1.36, 1.417, 1.34, 1.357, 1.429, 1.308, 1.324, 1.351, 1.323, 1.367, 1.412, 1.391, 1.661, 1.34, 1.38, 1.528, 1.417, 1.352, 1.569, 1.32, 1.473, 1.531, 1.445, 1.407, 1.529, 1.356, 1.349, 1.362, 1.358, 1.375, 1.365, 1.317, 1.302, 1.342, 1.351, 1.393, 1.473, 1.392, 1.299, 1.367, 1.381, 1.354, 1.374, 1.551, 1.448, 1.387, 1.361, 1.358, 1.362, 1.568, 1.343, 1.334, 1.378, 1.417, 1.382, 1.421, 1.345, 1.336, 1.302, 1.349, 1.381, 1.374, 1.359, 1.38, 1.553, 1.34, 1.269, 1.353, 1.329, 1.649, 1.392, 1.367, 1.377, 1.403, 1.361, 1.352, 1.466, 1.389, 1.346, 1.345, 1.35, 1.383, 1.446, 1.613, 1.395, 1.402, 1.394, 1.348, 1.353, 1.395, 1.345, 1.274, 1.425, 1.351, 1.586]
- (0.0077692351582683648, 0.92985189389348166)
- 方差齐性检验通过,可以认为方差相等(说明硬件或者执行时间不同可能带来的误差可以忽略)!
- ===================
- 均值: 1.39346
- 方差: 0.0075982484
- 标准差: 0.0871679321769
- ===================
- ===================
- 均值: 1.39223
- 方差: 0.0058431971
- 标准差: 0.0764408078189
- ===================
2.T检验
如果均值的误差重叠,则认为软件迭代对性能没有影响。显著性检验是为了检查两组样本有没有显著性差异,通过校验可以说明这两组数据的可信度。
其实T检验更适合服从正态分布的小样本判断,大样本应采用z检验。但由于我对小样本跟大样本都有对应测试,得到了同样的结论(ps:具体t值不同),故这里暂时先用原来的大样本来处理。
显著性检验脚本:
- #!/usr/bin/python
- import string
- import math
- import sys
- from scipy.stats import t
- import matplotlib.pyplot as plt
- import numpy as np
- ##############
- # Parameters #
- ##############
- ver = 1
- verbose = 0
- alpha = 0.05
- def usage():
- print """
- usage: ./program data_file(one sample in one line)
- """
- def main():
- sample1 = [1.15, 1.119, 1.098, 1.147, 1.092, 1.131, 1.17, 1.138, 1.115, 1.143, 1.126, 1.182, 1.124, 1.145, 1.093, 1.131, 1.102, 1.191, 1.093, 1.089, 1.115, 1.128, 1.119, 1.163, 1.143, 1.114, 1.098, 1.142, 1.126, 1.213, 1.279, 1.125, 1.174, 1.103, 1.13, 1.089, 1.164, 1.106, 1.155, 1.085, 1.186, 1.155, 1.207, 1.081, 1.122, 1.112, 1.137, 1.096, 1.078, 1.122, 1.11, 1.095, 1.132, 1.134, 1.118, 1.117, 1.116, 1.116, 1.108, 1.14, 1.099, 1.124, 1.113, 1.203, 1.135, 1.124, 1.098, 1.105, 1.082, 1.107, 1.155, 1.164, 1.096, 1.175, 1.17, 1.161, 1.093, 1.152, 1.085, 0.969, 1.068, 0.95, 1.077, 0.999, 1.147, 1.144, 1.097, 1.119, 1.126, 1.148, 1.083, 1.106, 1.107, 1.094, 1.121, 1.136, 1.086, 1.141, 1.119, 1.153]
- sample2 = [1.154, 1.094, 1.131, 1.087, 1.148, 1.046, 1.228, 1.142, 0.931, 1.063, 1.12, 1.08, 1.129, 1.073, 1.116, 1.081, 1.177, 1.081, 1.133, 1.093, 1.13, 1.085, 1.125, 1.062, 1.133, 1.062, 0.927, 1.055, 1.202, 1.162, 1.102, 1.098, 1.126, 1.144, 1.088, 1.131, 1.105, 1.094, 1.099, 1.112, 1.158, 1.181, 1.107, 0.937, 1.082, 1.1, 1.06, 1.114, 1.088, 1.141, 1.085, 1.232, 1.131, 1.155, 1.069, 1.149, 1.088, 1.125, 1.074, 1.13, 1.053, 1.102, 1.128, 1.166, 1.101, 1.192, 1.073, 1.131, 1.057, 1.098, 1.077, 1.119, 1.084, 1.164, 1.114, 1.148, 1.063, 1.113, 1.084, 1.063, 1.05, 1.078, 1.112, 1.181, 1.109, 1.087, 1.075, 1.078, 1.109, 1.081, 1.104, 1.059, 1.099, 1.142, 1.084, 1.084, 1.09, 1.089, 1.14, 1.105]
- sample_len = len(sample1)
- sample_diff = []
- for i in range(sample_len):
- sample_diff.append(sample1[i] - sample2[i])
- if (verbose):
- print("sample_diff = ", sample_diff)
- ######################
- # Hypothesis testing #
- ######################
- sample = sample_diff
- numargs = t.numargs
- [ df ] = [sample_len - 1,] * numargs
- if (verbose):
- print("df(degree of freedom, student's t distribution parameter) = ", df)
- sample_mean = np.mean(sample)
- sample_std = np.std(sample, dtype=np.float64, ddof=1)
- if (verbose):
- print("mean = %f, std = %f" % (sample_mean, sample_std))
- abs_t = math.fabs( sample_mean / (sample_std / math.sqrt(sample_len)) )
- if (verbose):
- print("t = ", abs_t)
- t_alpha_percentile = t.ppf(1 - alpha / 2, df)
- if (verbose):
- print("abs_t = ", abs_t)
- print("t_alpha_percentile = ", t_alpha_percentile)
- if (abs_t >= t_alpha_percentile):
- print "REJECT the null hypothesis"
- else:
- print "ACCEPT the null hypothesis"
- ########
- # Plot #
- ########
- rv = t(df)
- limit = np.minimum(rv.dist.b, 5)
- x = np.linspace(-1 * limit, limit)
- h = plt.plot(x, rv.pdf(x))
- plt.xlabel('x')
- plt.ylabel('t(x)')
- plt.title('Difference significance test')
- plt.grid(True)
- plt.axvline(x = t_alpha_percentile, ymin = 0, ymax = 0.095,
- linewidth=2, color='r')
- plt.axvline(x = abs_t, ymin = 0, ymax = 0.6,
- linewidth=2, color='g')
- plt.annotate(r'(1 - $\alpha$ / 2) percentile', xy = (t_alpha_percentile, 0.05),
- xytext=(t_alpha_percentile + 0.5, 0.09), arrowprops=dict(facecolor = 'black', shrink = 0.05),)
- plt.annotate('t value', xy = (abs_t, 0.26),
- xytext=(abs_t + 0.5, 0.30), arrowprops=dict(facecolor = 'black', shrink = 0.05),)
- leg = plt.legend(('Student\'s t distribution', r'(1 - $\alpha$ / 2) percentile', 't value'),
- 'upper left', shadow = True)
- frame = leg.get_frame()
- frame.set_facecolor('0.80')
- for i in leg.get_texts():
- i.set_fontsize('small')
- for l in leg.get_lines():
- l.set_linewidth(1.5)
- normalized_sample = [0] * sample_len
- for i in range(0, sample_len):
- normalized_sample[i] = (sample[i] - sample_mean) / (sample_std / math.sqrt(sample_len))
- plt.plot(normalized_sample, [0] * len(normalized_sample), 'ro')
- plt.show()
- if __name__ == "__main__":
- main()
轮流替换sample里的值。为了保证结果是可行的,先用numpy生成了两组服从标准正态分布的测试数据来说明。
检验结果如下:
输出为:ACCEPT the null hypothesis。
意思是这两组数据没有显著性差异(均值)
另外对我们云测设备的数据进行测试。
- 第一组测试:
输出:REJECT the null hypothesis(代表我们数据存在显著性差异)
2.第二组测试:
输出:REJECT the null hypothesis(代表我们数据存在显著性差异)
3.第三组测试:
四.总结
1.通过正态性检验-方差齐性检验-t检验后,真正能用的数据就只剩下第三组。
- base_list_3:
- [1.359, 1.415, 1.395, 1.318, 1.345, 1.417, 1.36, 1.373, 1.337, 1.332, 1.498, 1.318, 1.392, 1.364, 1.397, 1.793, 1.341, 1.364, 1.428, 1.345, 1.418, 1.364, 1.372, 1.541, 1.465, 1.373, 1.337, 1.52, 1.375, 1.367, 1.366, 1.347, 1.334, 1.422, 1.354, 1.369, 1.413, 1.345, 1.373, 1.363, 1.464, 1.344, 1.324, 1.331, 1.405, 1.355, 1.674, 1.38, 1.352, 1.339, 1.326, 1.362, 1.431, 1.774, 1.312, 1.292, 1.384, 1.473, 1.337, 1.406, 1.412, 1.385, 1.292, 1.384, 1.342, 1.333, 1.435, 1.372, 1.42, 1.315, 1.344, 1.414, 1.51, 1.334, 1.308, 1.468, 1.401, 1.316, 1.373, 1.407, 1.474, 1.382, 1.346, 1.373, 1.366, 1.378, 1.315, 1.417, 1.431, 1.379, 1.324, 1.383, 1.349, 1.4, 1.327, 1.734, 1.395, 1.412, 1.438, 1.384]
- cmp_list_3:
- [1.414, 1.326, 1.421, 1.371, 1.363, 1.36, 1.417, 1.34, 1.357, 1.429, 1.308, 1.324, 1.351, 1.323, 1.367, 1.412, 1.391, 1.661, 1.34, 1.38, 1.528, 1.417, 1.352, 1.569, 1.32, 1.473, 1.531, 1.445, 1.407, 1.529, 1.356, 1.349, 1.362, 1.358, 1.375, 1.365, 1.317, 1.302, 1.342, 1.351, 1.393, 1.473, 1.392, 1.299, 1.367, 1.381, 1.354, 1.374, 1.551, 1.448, 1.387, 1.361, 1.358, 1.362, 1.568, 1.343, 1.334, 1.378, 1.417, 1.382, 1.421, 1.345, 1.336, 1.302, 1.349, 1.381, 1.374, 1.359, 1.38, 1.553, 1.34, 1.269, 1.353, 1.329, 1.649, 1.392, 1.367, 1.377, 1.403, 1.361, 1.352, 1.466, 1.389, 1.346, 1.345, 1.35, 1.383, 1.446, 1.613, 1.395, 1.402, 1.394, 1.348, 1.353, 1.395, 1.345, 1.274, 1.425, 1.351, 1.586]
- (0.0077692351582683648, 0.92985189389348166)
- 方差齐性检验通过,可以认为方差相等(说明硬件或者执行时间不同可能带来的误差可以忽略)!
- ===================
- 均值: 1.39346
- 方差: 0.0075982484
- 标准差: 0.0871679321769
- ===================
- ===================
- 均值: 1.39223
- 方差: 0.0058431971
- 标准差: 0.0764408078189
- ===================
可以看到这两组数据的均值跟方差均比较接近,也是比较符合我们经验结果的测试数据。
2.同一个包,同一台设备的启动时间测试结论如下
(1).三组测试数据失败两组,足以说明我们的测试很不稳定。(需要找目前测试不稳定的原因,主要是目前引入的变量)
(2).两组样本通过方差齐性检验,说明我们不需要引入新的测试变量,如cpu,内存变化,以及硬件等对启动时间的影响。
(3).通过控制t分布的置信区间,可以动态调整对应的数据均值范围。
利用统计学知识为android应用的启动时间做数据分析的更多相关文章
- 截取HTML中的JSON数据并利用GSON进行解析(Android)
截取HTML中的JSON数据并利用GSON进行解析(Android) 前言 最近在做的一个Android项目,需要自行搭建服务器,队友选择买了阿里云的服务器ESC产品,在数据获取上,我们采用了Andr ...
- 利用FFmpeg玩转Android视频录制与压缩(二)<转>
转载出处:http://blog.csdn.net/mabeijianxi/article/details/72983362 预热 时光荏苒,光阴如梭,离上一次吹牛逼已经过去了两三个月,身边很多人的女 ...
- (转载)Mac系统下利用ADB命令连接android手机并进行文件操作
Mac系统下利用ADB命令连接android手机并进行文件操作 标签: Mac adb android 2016-03-14 10:09 5470人阅读 评论(1) 收藏 举报 分类: Androi ...
- Android Intent到底能做些什么
Android Intent到底能做些什么 原文:http://www.toutiao.com/i6348296465147757058/?tt_from=mobile_qq&utm_camp ...
- (Android+IOS)我们正在做一个新闻App,做几乎一样的,倾听您的建议 (画画)
(Android+IOS)我们正在做一个新闻App,做几乎一样的,倾听您的建议! 新闻采访是做,前端展示APP界面感觉还不是非常好,还须要改进改进,希望公布(Android和IOS版本号)前听听大家的 ...
- 17、 利用扇贝网:https://www.shanbay.com/, 做个测单词的小工具。
先说下,我可以说完全没有看题目要求,我只看了下扇贝网的单词测试工具就开始编码了,写出来的代码尽可能的模仿了网站上的效果. 因为把问题搞复杂了,在这个练习上耽误了很长时间,最后都不想写了,所以代码有些混 ...
- 利用uiautomator实现Android移动app启动时间的测试
为了减少因手工测试的反应误差,这里介绍下如何利用Android自带的自动化测试工具uiautomator实现app启动时间的测试. 测试基本思路如下: 1.启动前记录当前的时间戳 2.启动app,直至 ...
- 【转】Android 学习笔记——利用JNI技术在Android中调用、调试C++代码
原文网址:http://cherishlc.iteye.com/blog/1756762 在Android中调用C++其实就是在Java中调用C++代码,只是在windows下编译生成DLL,在And ...
- 利用JNI技术在Android中调用C++形式的OpenGL ES 2.0函数
1. 打开Eclipse,File-->New-->Project…-->Android-->AndroidApplication Projec ...
随机推荐
- iOS开发之──传感器使用 (转载)
在实际的应用开发中,会用到传感器,下面首先介绍一下iphone4的传感器,然后对一些传感器的开发的API作一简单介绍. AD:WOT2015 互联网运维与开发者大会 热销抢票 在实际的应用开发中,会用 ...
- Vysor:在电脑里控制你的安卓手机
Vysor是一款可以使用电脑操作安卓手机的谷歌浏览器插件,在chrome中安装了Vysor插件以后,用户就可以使用电脑打开手机的屏幕,在手机的屏幕界面中,用户不仅可以观看,甚至可以使用电脑直接操作手机 ...
- C语言笔记
.c是C语言源文件,在编写代码的时候创建 .o是目标文件,在编译成功的时候产生 .obj .out是可执行文件,在链接成功的时候产生 工具:clang编译器(Xcode3 gcc Xcode4 LL ...
- OC中UITabBarController控制器
UITabBarController UITabBarController(记为O)常用于管理多个导航控制器,例如有ABC三个导航控制器,可以:addChildViewController(记为A), ...
- 用GCD线程组与GCD信号量将异步线程转换为同步线程
有时候我们会碰到这样子的一种情形: 同时获取两个网络请求的数据,但是网络请求是异步的,我们需要获取到两个网络请求的数据之后才能够进行下一步的操作,这个时候,就是线程组与信号量的用武之地了. #impo ...
- php示例代码之 使用PHP的MySQL标准函数
<?php //连接参数 $host="localhost"; $user="root"; $pwd="111111"; $db=&q ...
- fillStyle线性渐变
废话小说,沾待马 <!DOCTYPE HTML> <head> <meta charset = "utf-8"> <title>ca ...
- 持续集成 .Net手册--提升开发效率和质量
参考:http://blog.csdn.net/chelsea/article/details/132525 持续集成 .Net手册 一.概念 Martin Fowler的文章:Continuous ...
- vs中不得不会的一些小技巧(1)——细说查找
最近在改公司里面古老的asp代码,不说文件有1w个,起码也有7,8千,而且文件里面include一个嵌套一个...当某天jira平台 上出现了需要你改的bug的时候,甚至都不知道这个错误在哪个页面,更 ...
- 0010《SQL必知必会》笔记06-表的修改与删除
1.表的修改: 1.1 删除列:ALTER TABLE 表名 DROP COLUMN 列名 1.2 添加列:ALTER TABLE 表名 ADD(列名 数据类型) 1.3 修改列名:ALTER TAB ...