题目描述

花匠栋栋种了一排花,每株花都有自己的高度。花儿越长越大,也越来越挤。栋栋决定

把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希

望剩下的花排列得比较别致。

具体而言,栋栋的花的高度可以看成一列整数h1,h2..hn。设当一部分花被移走后,剩下的花的高度依次为g1,g2..gn,则栋栋希望下面两个条件中至少有一个满足:

条件 A:对于所有g(2i)>g(2i-1),g(2i)>g(2i+1)

条件 B:对于所有g(2i)<g(2i-1),g(2i)<g(2i+1)

注意上面两个条件在m = 1时同时满足,当m > 1时最多有一个能满足。

请问,栋栋最多能将多少株花留在原地。

输入输出格式

输入格式:

输入文件为 flower .in。

输入的第一行包含一个整数n,表示开始时花的株数。

第二行包含n个整数,依次为h1,h2..hn,表示每株花的高度。

输出格式:

输出文件为 flower .out。

输出一行,包含一个整数m,表示最多能留在原地的花的株数。

输入输出样例

输入样例#1:

5
5 3 2 1 2
输出样例#1:

3

说明

【输入输出样例说明】

有多种方法可以正好保留 3 株花,例如,留下第 1、4、5 株,高度分别为 5、1、2,满

足条件 B。

【数据范围】

对于 20%的数据,n ≤ 10;

对于 30%的数据,n ≤ 25;

对于 70%的数据,n ≤ 1000,0 ≤ ℎi≤ 1000;

对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤ hi≤ 1,000,000,所有的hi 随机生成,所有随机数服从某区间内的均匀分布。

题解1:动态规划

条件 A:对于所有g(2i)>g(2i-1),g(2i)>g(2i+1)

条件 B:对于所有g(2i)<g(2i-1),g(2i)<g(2i+1)

用h[i]表示第i株植物的高度。对于第i株植物,有两种情况,一是h[i]>h[i-1],二是h[i]<h[i-1]。

用s(0,i)表示第一种情况,s(1,i)表示第二种情况,f(0,i)表示s(0,i)能留下的植物量,f(1,i)表示s(1,i)能留下的植物量(不是最优值),其中i是区间[1,i]。下面考虑不完整的转移:

s(0,i)时,且满足情况B,那么此时留下植物量+1。即f(0,i)=f(1,i-1)+1

s(1,i)时,且满足情况A,那么此时留下植物量+1。即f(1,i)=f(0,i-1)+1

程序如下:

#include<cstdio>
using namespace std;
const int N=;
inline int dmx(int x,int y)
{
if(x>y)
return x;
return y;
}
int n,h[N],f1[N],f2[N];
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&h[i]);
f1[]=f2[]=;
for(int i=;i<n;i++){
if(h[i]>h[i-]){
f1[i]=f1[i-];
f2[i]=dmx(f2[i-],f1[i-]+);
}
if(h[i]<h[i-]){
f2[i]=f2[i-];
f1[i]=dmx(f1[i-],f2[i-]+);
}
if(!(h[i]^h[i-])){
f1[i]=f1[i-];
f2[i]=f2[i-];
}
}
printf("%d\n",dmx(f1[n-],f2[n-]));
}

题解2:

所有的hi 随机生成,所有随机数服从某区间内的均匀分布。可视作单调“抖动”序列。

对于情况1,贪心中间植物最高的高度

对于情况2,贪心中间植物最低的高度

#include<stdio.h>
#define N 100001
inline void F(int &x)
{
x=;int c=getchar(),f=;
for(;c<||c>;c=getchar())
if(!(c^))f=-;
for(;c>&&c<;c=getchar())
x=(x<<)+(x<<)+c-;
x*=f;
}
bool f;
int n,h[N],g[N];
int main()
{
F(n);
for(int i=;i<=n;i++)
F(h[i]);
g[++g[]]=h[];
g[++g[]]=h[];
f=h[]<=h[];
for(int i=;i<=n;i++){
if(!f)
g[g[]]<h[i]?
f=,g[++g[]]=h[i]:
g[g[]]=h[i];
else
g[g[]]>h[i]?
f=,g[++g[]]=h[i]:
g[g[]]=h[i];
}
printf("%d\n",g[]);
}

NOIP2013 花匠的更多相关文章

  1. Luogu 1970 NOIP2013 花匠 (贪心)

    Luogu 1970 NOIP2013 花匠 (贪心) Description 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使 ...

  2. NOIP2013 花匠解题报告

    //<NOIP2013> 花匠 /* 最优子结构性质,可以用动规.注意到存在30%的变态数据(1 ≤ n ≤ 100,000, 0 ≤ h_i ≤1,000,000),因此应当找到线性的算 ...

  3. [NOIP2013 花匠] 新人解题报告

    本来按照老师的要求,我学OI的第一份解题报告应是在寒假完成的关于数据结构的基础题,但由于身体原因当时未能完成,那么就在省选赛前临时写几篇吧…… 题目描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿 ...

  4. NOIP2013花匠

    描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致. 具体而言, ...

  5. [DP][NOIP2013]花匠

    花匠 问题描述: 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致. ...

  6. NOIP2013 花匠 DP 线段树优化

    网上一堆题解,我写的是N^2优化的那种,nlogn,O(n)的那种能看懂,但是让我自己在赛场写,肯定没戏了 #include <cstdio> #include <iostream& ...

  7. NOIP2013花匠(波动序列)

    波动序列的定义不用多说,下面给出波动序列的求法. #include<iostream> #include<cstdio> #define N 100002 using name ...

  8. [题解+总结]NOIP动态规划大合集

    1.前言 NOIP2003-2014动态规划题目大合集,有简单的也有难的(对于我这种动态规划盲当然存在难的),今天就把这些东西归纳一下,做一个比较全面的总结,方便对动态规划有一个更深的理解. 2.NO ...

  9. noip2017考前整理(未完)

    快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...

随机推荐

  1. iOS开发工具篇-AppStore统计工具 (转载)

    随着iOS开发的流行,针对iOS开发涉及的方方面面,早有一些公司提供了专门的解决方案或工具.这些解决方案或工具包括:用户行为统计工具(友盟,Flurry,Google Analytics等), App ...

  2. Android APK的安装

    打开packages\apps\PackageInstaller下的清单文件 <?xml version="1.0" encoding="utf-8"?& ...

  3. Android与JS之间跨平台异步调用

     为什么突然要搞这个问题呢?  在开发浏览器的时候遇到这个狗血的问题,花了将近1天的时间才想到这个解决方案,Android与JavaScirpt互调. 因为接口是抓取的别人的,所以出现了JS跨域问题, ...

  4. 安装pods 遇到的坑

    1.  ERROR:  While executing gem ... (Errno::EPERM) Operation not permitted - /usr/bin/pod 苹果系统升级 OS ...

  5. 【代码笔记】iOS-底下滚动,上面标题栏也会跟着变动

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> #import "SVSegmentedCont ...

  6. Android微信登陆

    前言 分享到微信朋友圈的功能早已经有了,但微信登录推出并不久,文档写的也并不是很清楚,这里记录分享一下. 声明 欢迎转载,但请保留文章原始出处:)  博客园:http://www.cnblogs.co ...

  7. JSON TO NSDictionary Mac & iOS

    NSString * jsonPath=[[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"Cont ...

  8. VMware安装增强工具

    1. 开启linux,进入系统 2. 点击菜单中的"虚拟机"----"install vmware-tools" 命令 cd /mkdir /aaamkdir ...

  9. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  10. oom_kill_process造成数据库挂起并出现found dead shared server

    这篇博客是上一篇博客Oracle shutdown immediate遭遇ORA-24324 ORA-24323 ORA-01089的延伸(数据库挂起hang时,才去重启的),其实这是我们海外一工厂的 ...