NYOJ题目124中位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAJUCAIAAABsWvwaAAAgAElEQVR4nO3dPXLjuraG4TsJ5xqIYw5ku5g48wg6YSJHzjtxFUfgwF1Ome+gq3ZiZ8w6PEPgDUiAC8ACCFCQ7Zbep3ad05Yo/ov4uABJ/zcBAADU9n9fvQIAAOACkTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTCAK/N693C4eTjcPL/mTnx8ehcPvb81my9fpnFfOP15un043Dwc7n7vWnEAfxcSBnBlShLG7/ubh8PNQ/P4J3j5w/1LOP2fp9uH5vGPkzBeng+3bx9ibtoLAVweEgZwZQoSxsuzNuUSFExuCKc/Pr3YhCEyin32fQJwBUgYwAVbagm5/8laxWSzyN3vj8fjxmtN2vh4PB5un19twnh8a26XbhF1JtQzgMtFwgAu2CkJw7z2/kUPB2HCsB0owX/Hp3czCIOEAVwLEgZwwURKsLReEmW8hU0V+SEglTBenPGhy8wZ8glcMhIGcMH2Jwwz2MK+9v2tCbpR5qDgRRCRM9YhFyavLI/M03hzA3BZSBjABdudMJZRmetrl1c5ozttx4dJEnqnzDre08xteSFdJMBFI2EAF2xnwnDGTCyvVT4JYnLD0tlhY8Tza3z8R/P4x0zJh0qAy0bCAC7YzpGea8lBpJNoncPGl4/Ho/hUqkkwL8+H27enu4f7u+elCqJ/CBbAhSFhABds72dJXu8emsc37wuyvI4SM7TCBgX90yLiJUvpouGbPYGrQMIALtjecRgfj2+vwVdwuqM1w68A30wYzodNGIQBXDoSBnBlsr/TM/iSb5NXxPeC6x8k8cZzKANIw+8DBXBpSBjAldmfMObEcPv2oXSRTNPkfALlcPc7XJD45i4GYQAXj4QBXJkTEoaV+pVU9wtA1w+M+N/HxTgM4MKRMIArU54w4gMswlGisowRGZPxaiMIIQO4ZCQM4MqcLWG83euB4/k1GH6R/Al4AJeBhAFcmRq9JDr1S8TXp9yKxesd8QK4bCQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JA3+noWvafrR/jn1r/h66RtP24zyZ1Q3On/ZRO8NumMa+lYuRi18mvAL7Nza2+/zZxybKP14Thwz4dkgY+K7cpOA3GkqzlG6pbMLoBvuA/VPMYv7bPOM3V2aCHc3V+1uj/7Ko/dUP+TXe6oOJx8/pvAkjOAjac1vHazrLIZuJA3f/MtkvU5e/5fahPxg76JGJpaGT4Wl+M7T9GOTn7QAHfB0SBr4rERi24sRm4+EnjOUF0Xti7Qlzgd/bXL08Lz8GNk1zG9M8/pn/YX6ew/5bfTDx7zMr2NhIAclvEdX9G5FzvGKzPPGQLb+0sv4A/TRNkT0fORzbBz2xI83qDt26nW7yGDoyBr4zEga+Kz9h9PHeD6f0oDVAbsKwd7mxe+J10aU3xGPf5l3zX+8eDne/p5dnef+6/DyY+uA0RR/39lrT9XY3zL0GXmPs5ICMVrcsYcitD/uyCgpPU/bxms50yN7fmtwwkRX4loNelDDGvvUzhdsxRN8Pvi8SBr6rPTUMr3UJHh/7dm5/3b6Q4AXjuMzkTAnj5Xm+MzZNjnz8+V578HXSJ/b7Smw53ayM84dZd3Hn323Hod0Jw9+/QcKYJ4iPnMk9XtNZDtnH41Hpv9idMMxBL0kYQZHCSRhi9BHwHZEw8F0F4zCc9iWaMDJqGBtV93gJv+37Ezv15983t+3WeRKGU6sImqPyZmlvwnASzvKAPzxXmbF42Um9Wicfste7h8PtUQykmPe2O4pCHVrh1pa8g56eeN2RTduGFQo/jVHAwHdGwsB3pdQwRJN0Qg1jbW6WP522x22Iqg8bnL2/NTcPzeOfr0gYa3OcmzP2JYxlebJE4OxNtXYghxxMO46Xv5DplEP2eueMwfT+nKZpyQp+RFAfXA961sRzLapt/RBBLwn+JiQMfFd6L4loL05MGKIqIhNM9Ga5kY3byR99nCvwT1+RMOxfuTGjPGHMc3fHfbgfJB26pm3b+PAa7y5943hNZzlk/g5/f2v8UZ96T0qke6VkYnPo/BzmfcYk+Bv4TkgY+K52jsPQ2icnYYgn1prIUnyW99/iU5LrI9USxnJDfJ6RnhkJI/5YaMdnSYKZmhEV8xPzHLcOa/7xms5yyPy2fx1IEZ8m/uCkV0E2EsbkpTUvUVDEwLdGwsB3FYzD8J/drmFYQQ3DPmy7+Tu/NVabK7H4wmGDr3dicN/6IYXan1bNGYfRyR2X0T7t/yyJJywxZSSMnOM1neWQic+XTss3kdz9/ng8rj0dpuNDfXCKHPTYxP6O8GpANpt5nywhYOD7ImHgu9pTw9ial9JiifiyXq/d5mop5CtNXSDRXL08yy9ZkuHg9U75Ei31wcTj65Zu1TBkdMsaivGtEoZ6vKbzHLJpckZl2kpSeBxjB7doYm9HhFve9qM30pNPkuBbI2HgryIusG7ntNp4BFOHt7Vav4E7lM6ZQvlyict3csJYj4M/BlN2SylTFB+viUMGfB8kDABpJw86AXCVSBgA0kgYAPYgYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBXKXl+zEzvuuCH78AsAsJA7gC8ucsxM+hm6fc/OD99oWqLHG8vzWbv8QB4NKQMIBrstQs9BCxZo4lQHg/BLL7yz1fntefD315JmQA14GEAVyBobM//WZ+oHPJCsoP3psfR0/QftNz40dKrT9Pt9rvlQO4NCQM4BosQWIJD3qAMOlgZw0jN2H8vr8hYQDXgIQBXIc1XHSDyAqRGoZNGCeNv1B8PB4PN8en9xNnA+D7I2EAV0LWGDITRnXvbw0FDOBakDCAayE+NaKO9FySxti3TTfEP1CyO30QL4DrQsIArsScGeYYkaphOB9kdZ4buqyBFiriBXB1SBjAVZjTwlyfSCYMN1aMfdu0/ZgzjDMxCZ9QBa4RCQO4AiZZOJ9XVTtAvLrF2Le53SPxhPF6t37dlvnv+bXuFgL4dkgYwOULxm5GB3POT6wBxPuwar3PlAC4eCQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfUUJ4+X5cPNwuPtt/v59f/NwuHl+9f89TdP08XgUU4Zz+H0vJgYAAJflTAljnvLm4f5Fn8Pr3cPh5uFwc3x6P3ULAADA97MvYby/NTdzRND/u3+ZPh6PB7eq4cxhLnKQMAAAuEy5CWMuUZj/bt8+1gf1XpJp+vN0+3D/8ufj8TmRRcysAADAJTnbOAyNiSnh+AwAAHBRTkoYMaLgISY2/SbzOAz6RwAAuGA7E8afp9utjg+t4NHcHsWUfJYEAIBLdVLCmOsQon9kHgGqJYzXu4fDzfOr91kSBmEAAHCZdiSMm4fD7fN9UcKw/w6qIM3jnzNsFQAA+FqZCUN+PLW0hrG89vl1cmOHmaf/nRkAAOCvd/ZxGM/zqM+lVuF2nXw8HqlhAABwiT5jHMbvezveIvfTKAAA4K/2WSM9gzkAAIALdq6EIbpRyBMAAFydkoQxf2VW8/hncxzG053NH8kpGekJAMBlyk0YNijMX5MlaxjCUsN4fro7khsAALhiRb0kAAAAWUgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqO8sCWPs26Ybtidq+3GapqGbJ/b/Pzq1an52nsD+O/aIfdxZUGw6f9NiM0uultgE5aWx5YZ7UptYTDX2bdP1fZteFWd2iSPlLj7nsCb3obswMzt/tpE9WbYeG5uyPJI83DmnQ2r+7nPLrLZOE3elImdb7D0QO+0yTqGdxr5t1M0ue3dvLcI7PboheDw1263zJWOf19sc4KqcI2HId512MZRPdsP8v+trxr5V3rPBW1x/dtKvn0OnXQerJozokuz1bUfCUFsHdfPNLsy/7kZXuGTx/jalF5iXMBLL0tqWPMprNhJGYTu8tVLpGGmeCqfS2vB1qvWlYvnOTDJPoV3Gvm3aNpIxst/do5OHg7eKtwF245zHk9u0cWjy9nnJxQrAon7CMG+6uS3uvbev00xo2cN/vO0H+UjXZdcwond68nbfSxg5lZdEw2OvjH5VYUfC8HeEaYyVrY4lDG2Dtu9/5Q5q+zH5guV5samRQyPnImos/kaJ/RCs/EkJw92KyPGIrL+6fzKmXcsW6bVdV8QewvQsc2sYBafQDvbAKyE1/909isOpvlXCzOyX6LxLRNt1uYcmd5+XbA6AVe2EYUP90mz6radeEneuIGZ6pwXIqmE4V96uUxtu5/4js4YhYoX959AFFxR31czc/MtmZjPWdp3YfKU+EeQZOY3SBq03uJmtc7A7oiXxoTMblurAKapheHvJaYnKE4Z8hXM8uk6/B91ehHIw9IOzbnV45O3j9kzZ00ZFo6vzRPoUKuWe/rE1z3p3FyQMuRytaDPv6vxDU7jPcy9WABaVE4a4iMZvt8xbdOiaZi5zrI1I18qKsdP3HiYMtR0IGsZYP4B/cYk2oJFrnJcx1OSw3P8kaxiRi5zfPLStP1k6YUSuscsz8dtgWY8Ido9bK4p1mDhV/GinTSphyIMYTFecMJw97Oy1tm2b8NbTOyLRCFSeMOSSvMfn/bu+a8KekUTxTz+OBadQCXFqrCsavHuy3935CWOZpZ8whq5p5BmSf2hy93nJ5gBYZSaM3Muavb8Xb0y9hrG+e9cbj6ZpumG+IfZfadu3Pto0rhf0tu875VbHYxpZ7xqiVT0id2upMQzL5ON2wogsN7wBnbwLmeySnrsrgoSx/H+YMOzqie1yBxw2beuuwDJfUcEZRruP/Su6dgynoWu6rpM9XV7dXsslYbAoTBhuNHKaF5GCnTCbrrupD55Yw+i6VgYArb4W3eaCGsaknkIF7+7ePVnd1Vp3ZMm7OzdhDJ1T2BOPd70tD7rdLulDYyLm9j4vvFgBWNQfh+G+2TZ6SZSL92h7PEStYG0iNmoYy8Rd2EfqX9jFDY9p6GQySaywmzeS999T5LLpTe70iMh5B62RV0SRN8HlCWPoW7OMoMOnG7xbvfVS2nrVjaFr2m5w/tYik19jjtUw5r/Ndrp3yXsSxtDNjahpVbTCtrKt0SqPtzbe1oi/S2oY7XIEI8FYexvFyYJb5imUuSf9sz18RL5Bct7d2Qlj7Dt7GN3u0GHJuDI55ByaoSva55mbA2BVO2E4F7VOHRCw3uV4xDU+qOc6LYRWx1hK/93gXbyi1e714rpUPZZ2JX376t/gyoCiX+zTCcNcosNrlHoD6jyznTDCRnzs2/ho2eA4mKu5iEDaHlF2mbcf7aFR0mVwYZ8P9GhurYMGoDBhyNXUU4WzmnKR7or680vuxKaJBEF3lziP6+3ulNfYBbMtOoV2ipVWSt7duTUMsd5OWWi5nKy3B/mHZsrc54UXKwCL+jUMV6KGEb+GeiMclonXS2JwwXVuzN3ih1v4d4orai3FX5HwpmVrmEdBDcPr6FUzVWRF5IPD+kE6N2GYeToXca1ZlXtPHJ+262wKkJfb6H5MV2zselpBNnNe454HpyUMtYYSVG6W9ctMGOU1DK+ZSiQMr+4Uvh0S7ed2wphSDxaId97kv7uVhLHU9YINiicM+cbMPzT+qsX3edHFCsDiLAnDXP/cIqR9arkkDIPsAHaKC94jk1eOzEwYzrq4M3Rbl6A3OX7FCBNGIPZ6r0Wz5Xj5Qvdql24e/MZcJgy56dELpVjuelkNrubKujshzisSOa8Pa+rbNQy5N/TWK54w4g2e3RuphOFv3ebyclcqnu6cx8O9adpbf86n1jBKtiwlusML3t1uWrKZU+27yKphBOuS2sq8fV5ysVKvX8B1qp0w/D74RA1jsm/GuWxvO1jtbbff3g7Li6NdL8oSzSJ60dz6NyThKITobUlewlBWy7ne+3vJmX3kMwNaMFg7jkx5R14iZYlAa8LEjLSrYZgw1gSx/MttzfQPZbiHOy9hRPeP88KyJ8Rplb74ny1hbC5QPTxZFRR9cdmn0G6pSJf77lZqGFIkYcitkjtQWZuChJF6Rd7mjOs1isoGcMZeklQlNxiUPmlt1Nycm6/TMSPGlXfv0InG1B2np7Vd7li42I2s3xpGr9Nyxo2/VfIpEwS2m7imCT7KoVTaTR+Juo1+CWje5/LRdZW3ai5KNUTuIi9IhFvTDUM4wCGaMBJFoM1jkNfAaBHVTjN0TeojS5GllyeM8IyxFbq4nK+Tsmup1zCUU2i3WMIII2Ls3b3ZCCdrGMuy0oWpjISR3ucFF6txPa7UMAB++QwX49RBBQCAmkgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqC8/YYx923SDfGTomrYf9Un1JyANnbdD7cOxvRceg+B58dKxb8M52UnM0v3/V1ankc/MM/DmPXRNVGqF9U3cYJfrbG76pHO3zuzHjf0Z2yWpRW0donAry/bP1lzduSV3SuJEy5q5+9wyq8iZIBe0fZamTqdwfgC+q7MkDO/K7Dca6atD8roXXHoKrp92NTYu6eoKbFyNxXrlNxjVE0b4yrFvwzWalzt0TTesqzD2bXB01Qu7bR9k05B7KmzvqK0W2l2SWIczJIxp6CKrGX9h8IzeWsqVGQsby9g+VFYqtVPKAkbhgUmsRcZZuk6yvlQsv3DNAXyVmglD3A07j+featorZzphbDbh2nzkC6MzUVdge62Gbn1SbdLjC0pq+6Hghn7Z/6kawFJ7CHRDQQpUD2BeDSNnR/mnmb84LTiqZ526bl1vt9MkDLnFOcdlTWSx3elOWbk5TOxDd+27Idx7GQUidd9ErGWL9BnvrEXOWUoNA7gM1RLG0DVN1wVXhrYfS4rZkdK+XGRmkcCdT3jnG51LrG8htlb+U+kNkLZrGEpzG21+85c7mcbIaZzEMsVdo3swuy5oGGyXy2YNI29HFSeMzSf89RAL8Re22VZu02oY9ZrDxD6UC7b/Hvu27bo23Kjtzpz8c8/utTA32MflGV28O+h1Bf5SZQkjuNMQna/26rNeppd/fX3C8F+Wms2pCSN/HeN3auUJYz46trn3V8Av4TRt33ciAnatPSpOx4kSQoZufnFGV4BsZXJ31LzQ2Py6wZ50Wffj8gzITxjxrTHVErFhQ+cX7PJ3jb+LNsX3ofOM25PVrqeGPhs1buxLGF71z3s86ywtKbQA+NZOr2H4Fz2nhWr7sXrCyLvGfFrC8GvVef0ky1pUqmGYhkS5nTWzXGv267/W3pFuMA1ldOkiYcjxGwWydpTS6O+tYchHhq7puk5W2byegHXb7JqM4pz122jlNNfXv3IvSWQfLhuiDV5Y23OZHNOpSHvw9BpG/lkargo1DOBvdGLCCC682pW3YsIIFp/X2XHWhDG5wadtCxJGRGnCGDqnpORPpw561ccEyknDXhLb5eUWOvLvOLd3VBBrvDAZabCVAyTm5HcK5fSSDH1rtkxboJxU7aAQE9ZtHrV9OHTtOgbX7ZTwCxtj324MOlnjQt0aRslZmj6tKF8Af4dq4zDEVPYCFtxS+X9EFpN5RU5O+qkJY9+keTWMDeui/HCgNspKsyJuKcUdprNB7pW/G9IDFjLbVH1H2TVf1lQmk6UHQ5n5ckD9rgLzCr/oEkkYY99qY4nU/R3MUO1aWieMHsqT4oe7D0cz+jTsLpE7KlhotIaRd+7l95JMmWdpZJW82QL47qomDPPet6V3+8ovThjnHOnpkWP9U9PkaLsuf6RneA+43sDLFYpf1v1VX5vttuvW7hjbassVkHMNNy8SpLQdNfat+cSH0kvf9r2SMJzAaA+Vv21zMHLWyWlF235Qzk2nrOGOZsmq6IswoyejUxJGsA+VYk3Y5ueUtM7RSxJucfosjSNhAH+HXQljvZH1L6ZrcyMuBdUSRnA3nbg8e/PxhzrGr1GnJIyNddJfI74OYeurEZLRKJKivKZwHAb5GcuwQ0LsJaeTa5Rd/WamYnBGozci8Q2RIzbVRidjK6d4pAu6WzZrGOqi1xcGOcaZdt2n+hCH4oSRPksn9WTzon1kqXkJQ1ucPlGshiFfGjk5Ymdpdg3DP2sBfCdlCcO9hiqD8JaR4KKU3ISDw1PX1PSNijtF7KoSm8/m1Uh94fZayUkKrnR2t6xV46HzHwpfkpkwUq8wHRBd14gueVukCNsf+5TXRzDPfR4QY2eWaDa1HaUkjA1u1SWyrNEdEpmRMKL9L+r+mz+Ms3W4na7Cra0J1l+de+xkW/fjqFWA1JXaWlbWCm13W3jddDlnaV7CECW1kzqbAJxHdsLwrtjTNCnlcLUfv6yGcQ0GbYisI9JIZCSMZA/M8hnV4C47fEQ0VY0yAMJtL920oMuNXtk1jEEZ6KuuljL0QEsYXju57sdEx8lWLd9tDItqGGWjDZS9pp4Ia+GpT50n2pLLE4ZYA78vL7efMGk5K6NrDOCr5dcwAHwWhjMC+PuRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFBfbsIYukbqOvfv5dEheFHbjxuzdaYY+7aJvmadeOjChe0zdHZGY98GMx37dl6kmc7//z3Gvg1fqy3drGHpVpt5jX27cQA2jlBkKxOvim7G+rx4qbqCZ9nnAIDPVlTDEM1H0MgoTctmwPBfM/Zt03ZdpFl0mtqN5LJJabXE2sgVm6cYuqYb1onVkFC09KYb5jwVYTZwz1bbhDGOQRvuzsX9KziG1RNG+Mqxb9VoWn2fAwA+16kJwz40/yPVZvrVjuVe1bSBoqkZurAgsi570MonSgUlSSQM8/J+XoIpo4zjqEcAJRqU5x33Xn6KNc05W12yz7MTRmxxrrYfthfuLi69vm0/nm+fAwA+U+WEoU4bm1fbj8uM5nbKf7l8xPYQ6PMtLqBHahhNoyWVubl1Vsa0b0FSKBNtyG0/wZ6tTu37yjWMrcMu9892p427jDPtcwDAp8hNGO4dZDdsJAyvMQmbvLVpnfNFN4SNbdeZBnZtbobOabC0+/Is6V4SMc+ha5qm7fvONvxj37W2iSsfG2C2M1qj8abM2mp3f3ujWZzds1Wc8BNGMgGVJIz5DPKSk7so0TFVd58DAD5fhRrGfOGXTUtwsxq5qc7sWR+6eXTGVpuc213QtP0oEkbbtjY12fmNNvXY5nyt1HeDafL3jggxQww21jNnq+U8l2eW1bRdDm0/jFuDZ9V516thjH3btK09LbQlie6gs+xzAMCnOjVh2Mv9+py9g462oJGiR+RGeeiWplIMwzQDN0wLVHxPK2oo3SAKAf7Cvc0Wq7ts4b7GzjbdyhxMuNm/1WPfzsNKGq1UIB/xFu9vab0axtDNsS7yupyBw6fucwDApzoxYSxNkNtWuO2z90JvOvPysG89cnu91kfcUZAFrU5+JlFaWHETLu7JS8mEEc1ge7bapqRlLK0/SXHCyKhhbNC7a5xFySfOts8BAJ9qR8JwqxWykm8+A5JzRxrOOidhyN76ZL/MpmQXRaR+EQxo2N3Wbdcw5D9ztlomOzmNN2IyM2HkfZRE6cdJjfR0l6YUxLR51NvnAIBPVZAwzO2qbNPcSr4c3JCVMNZRj9k1jO2Z1jQOg/z4pPvZFvcRnzKa0XmyG8a+M6MZfX4NQ6xR8JD/sZvIKIdgZOvyRKqGsTwqBnGMkQEd6TmoS5Nxxln7gn2+fRgAAF8kN2F4d4/LaP9gAEZkLN52s5gYhxGZw6ckjGmyrdj8Naa2a8gWCyI31cm1s6MX82oY2fPdnma7OCFeaA/K2rcxdP5DBZutDqFQX5G3z81LGZoBAN9QUS/JbL0hnolwsFznh279rOFmM2Znkl3DWBe4M2Dk9QHMQxO9tjTMFJEOmuRHKtcn9REIsS6Rra0O51DG6yVJNdth5SRYY231zE6N7/S+ZJ9TwwCAb2tHwkAGvrMBAHDdSBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqK0kYr3cPh5vj07v38O/7m4fDzcPh7rf+sve3RnkVAAC4YAUJ48/T7cPh5vnVffTj8XiYE0bw1DTN8SL+LAAAuEy5CcMUKsx/zeOfaZqml+fDzcPh9u11zhlqGcOEjOUlAADg8uXXMF6eZUr4eP9josPcAzJXOPSQYeoc9JUAAHAlShPG7fFw83D/8vvp9nhwqxrrf7dvH/6LU/kDAABcnOyE8fF4PNwc7+/mhDF9PB71uPDyPE/geb1jNAYAANcjO2G83oN96v8AACAASURBVD0cbp6fHpeEsYzAMP/dP741N8enl7dGL1SswzgYjQEAwBUoGulpRnTahLH+I50wnDhCGQMAgIu387Mkx6fH/ISxDMK4f7H/qL4ZAADgWyn8Ts+PHb0ky5TPr9P66dZgKCgAALgkpyWMjBrGUvywdYt5yCejMQAAuGhnThjLR0hk0cL5Fg0AAHCRThuHsdFLIvtHhOULuOgrAQDgYtWqYcydIO8iYZiBGtq4Tr6ACwCAy3amhJGKF7OtX2QFAAB/sRMTxt2z+cERU5a4OT69+6M7deYX0fjwKgAAF6cwYQAAAGQgYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKivKGGMfdu0/SgfGjr/kVJj3zbdME1D14S6YZ0qWM7QySk2V7WKsW+jy7Rr5Sw42EN2U4ZunpP///ul9sjVGrqmSZ4L2rm1PqWclcLywrFv593un8XyBG663kymr4I4VcpOEjl1ajWn9e3m7J9w88PJUjuu/pkM4BIUJIzwatsNwRWt9MIydFmvCS948yOpC2HmrEuMfdu0rZYx1Kao7Uf9Yjs/OHTzHlyeH2Xzs91UqCsX3d7Tk+D+FStfQjAzu3vlBpY9aOcZ24IqJ7Kz8vYwt/24HJ3IcTBttTyG2ydJ8PKN/DFFAkbsBF23LLp3ClYSwNXJThjLRdq5Qo59Ozfy+5qX7XrANE3BFa4bgmtm6g604qXORhY1u5j1WPbQvOzw6tz1WhbphiCjmI0aurzmO5Yh7CrULunkrljZHJVVlbtbPQbpB5W/XIkzqHDt27734oSfMDZOHvF35kkyyEe6LpX//Bcv76RwSpMQ5rd2751YdkvyV7J+LRHA3yA3YTg3KMslY+hEK1jcktvXZFzgnfkHrXbbdZE5VOw1cNtTJVZFqhhD3/v7TWyFs1VBhVxZcMxGmMqJgaU1n8yEUTrbYFXd6KTWAlIPKrPdrmIUNorr+ekXLMKEMU3jOKZXwSsfbJ8keTUM5yVDp5QAx75t+0H0+CxVOD1hFK4kgKtTMg5j68K8qymfG6B4f7ftaRD1WH024bVs6Jq2rTAeY+xb0+is7aVagdFq9EPnNjB2ZEDf2S0c+65tWzWvZTXkW9WaZMIwx7W8WU2+ZOds/VX1E8rQLffqeQ+qESNYYqTnYiuI2A20M08mDHFKK8vyjl/JSaImjGCefsII3xtj37Zd561oqpek6EwGcG32f5bEvS6vwyJyL8rmVdrFPWhjRbYQF7zkOFAzc+1CW7CS3jjBsPZu/3T6kfzeJLfXw94jrjXlbjAlIS8sZSWMrWEW6o5WhyyIDYsdtY0VO3G250oYYqREFrVpTCQ5edwTNYxInPHa4sKTZHnaNvX6Tg5rGP6C17mKh6M1jNIzGcC1+cIaxrDe+ChPuTef4kLZr5cvexGPfdLEqfbuEFb4w0fGvm3armvFtXn+1zgM4t5uvf7aV3n7a9kIf23PlDBO70BSV+z02Z4tYejpYBk9sVGMEWV/p1GNTLseyljC8GJu12V+oCM4SdxK0VYNQ3u/ih2+vNw9mzZ6SfLPZADXpiBheBeME/tY49Fg0i/feg0jNhv3ulfvWhcfVZBTGlku38r9pZlDWLk+Xw3Drsq+RBBdsdNm+5kJwxm0aJNDE3+ZHE3hracd2rtWsDZrGOsf6iid7JPEGWmh1THMRoY1DOf1gxmc4b3F9PmVnskArk1+wshtQYuUJYymaZquy6hhBI1fzkjHLPGEoU0a7fd3xmS4fTD+a75kHMYpvSQnzvZMIz3VwOH3f4WncOqG3VlT+UzQlRYmjKHz4sZa+lqLHNkniZMQgvPOvJviCcOf0n8wVsMoO5MBXJtd4zBMx4B6H1U6p82EsTZLeTUMdQhmUTZI2JiLXJGgOTWX5WGQ4/7CDQ37ZbZ37Mbez0lYpTsosxEpna3eoRM03vkPKvNdVt3fac54mWW6MP54qcXmAvOEraeo7fLYt23brj1n8nRZU0LhSeJ0S+xPGF52WNJfPGGUrORphS0Af6XChCFu/MR90+4Sxr5eErXLWXZLR9YjaEB2KEsYW2WD+fsLlsZBjtfw7vszVjpaxfCCTr0rfP3b1MSqqg1U/oMiYIgjOJpv0pSVFNNkdoNycoZ72UZckx8iw5jNFOuBFsuyvRGd/LRU/kkyLp8yjXXDrV1ByVPBJhT/BEyMw8hbSbH1VDaA65GbMLzL8HTyOAxtJsmwIhPG3NVsisn2BRltXiqB5IglDL3+r1gvxXIn1OjU2eopuWracXPH3m6+vPHfAe7z2nfPDZ38fIfsFxE1Am2F/FY+fpKYb9zqevGJ1ZIahj/sQtlDqmXDcs9kahjAFdrVS4LvKdI/hGrDcAAA2UgYuHBhPQAA8AlIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqy04Y4uv92q4r/uFS+e2Ayd+7rPK9wmPiC5S972TWv3izwrdW5X/9lf5lnKP4jkbzoxvO/3+KxDe3bv4U3vJdjsrr834ULrFO8ndQlcMmvsRbn5v9vnD350GydrWcOr7dOzZN+f2+1NfO1/6Kj1O/7vaCbX6lSvTN/j3excBXKUoYS6NtfjxBa2Iiv/bsxorR/7GGVY03Xt5vbUWv0VXe++b3q7VZZf9KrdjX60oprebg/+L48kh5G5T35edFu0f/Pk39GMldH/15jfXV/q95dv5PpUePsvzy7qJdPSmNhv6sth+qJYx0wNhxPmytXbVEU+9c3VxO+KN1wdmrPqg+nvpa2NSbvejUAi5NYcKQV+Tg1yEXmRcj7XeYgrZ3149z5LWA56xhqD/2mVhhZTvVGLL8xpa/h8yvT/k/R1Xhql3l12eiedQ9zOaqO1/M+60f3DKTjPan25WEETkE4Y/xZu3qQT4y/8JMamui2+tMGN3XzhspJ5Yu673jfEiHGXVtdzrjuerOMPj5wOCEUB+M/zv1k0SxN3vJuxi4QGUJo9d+7tp/n+QnDO8G1L+PKm/d5M85bb30bDUM9/fXUvc+3s9Qatca/5ZPrLXzg7Jt33fyshj+fHjB2qedeDWM3S3Lvo/W/hS58jrnx0e3E8ZcM0tuluxz2djV8o90DUM5m/WzOys7yF2xeYKWng9Z5ZX0cc+rG+5Yt6KZx1bYPZfWEyZ8MDZxOM911bbf7LmnFnBpyhJGJ25GzR2deX/Yd01OpX2O8e4loPXfnbvffPMVKX7ldn7sMd7k7CB+XHK9LPp1lVhp1q77GhzsT1iaX5Lt2lbscKeldctKw86EEW5QpJdh+yB7O1ysqthYsw/kOJ/oabTuT3MIUwlD/f3SdWlBpT5nV0+RhBE20tkJI/qImoETe152MJWcDxmDX+IJwxym3HOtaN1KZx5ZYT+hDN1SgQoeHCITqxEj681edGoBl6Z0HMbyhhi6pu26bv1lardp2FfDmLz329palDRjifuI0rdy2aLXioRZnl8Ltn0Amew91VpX7QYzdFLsZueuf9mvuxJGTjhcV0zZW5HMtB4a7wKt3BKKm9t4L4lsp9I1jEhEkmfDeqS2d/VkD2Drnfz++XCOhDEvOtHb77ww93zIeMOGxyoRk/WzSNbbttYtmcHT89dWuFbCcM+UnDd74akFXJrShOFcyLVm7qRxGJNzadiRCYZ4p+46t5Iu7ZIFu9OHj2yWmqeglVFa7fWqLK+gtq+lXW6PatQwlor2RgFb1Hudq2kwid8yRM8g5S91V/jNVCJheMe869TWe2tXu/fUn1zDmGeQCIF+wsg9H8oTxtqEFttetxNmHlnhagljDbNFb/a8dzFwgU5PGMFtxHLhjbbj2g2tWoYuThj2PqG4hnGGd3p40fGeVJsHWYKP7zivS8muvSjRnpww7GXRSQ7uxd+5dMZ6rIN9u1aX5Uo650unfyTJW5ZTcc+pYax/yIdLdrV46di3eh1DlMvTlLdQSljlE5QaRu75sKuGYde7MAvkrdvOmUdWuHbCULcq2udZcGoBl6YoYazv+kQNw7wL9YY+UjJXr5s7ahjBjBNzk5eLaIu/31bC8OruYYOodAuIWctNdHZqN6jTFBmdETZ294T3Ycm44dbF/RmLXmxVqobhHzqtZ83doUPnnZOypXO/4CW5q9c5zidU0Drb06y8hpGlpIaReT7UHoeR7MUoWjdl5lvzV1dYfbvF3oPR92biPR1/s+e/i4ELVFzDsH+IhCH7JuSt72kJI+PCF1vTnIThvMG/oIaxlTDGYZBjULxeXv+RYO2T16/Uui0v9PdiEAjU0oR38+ekUDEH20b4a2g2eC1NaLMX/7S3o4lp27ZdT87gkA9d03bZu3ryCtzxhOHLOJ39U3LrK0Nij5eeD9thZ7ODL3m2exOWnaslM18p3TpBJFUfTPx7I2epa1jwLj69cAN8O3sShn5nMZnnRBlQFXk+eF/tbfVzEsZ8+e7scK3v10siJ1tXdLBrLFv8HS3K5q3YaEf5iyNtjlk3KDs5nKvtuFi30K2GeBvh3wlHUoOokkXG9/ona9gTs/amD3bscs6uNntmWDsNAzsSxjyb4HiNZmCgv0/Tcy9uxVPr5m3hqc3fnoRRvAR1hdUGPNaqa48nYlbOm33j1BLd0FQ2cDHKE4b9R6ReKyrZO2oYfm/8DmojLWcX3JdEnHYxLahhOKsZaXC1boXNO8v40re2TWnbEnNzV92b09C1YmBFTqkqNYRhjj3zR1GDXSjGRXiJTRRH9OVk7WrzjVvrF8OcXsOI1Cr83SFOXr/Vq3G67i0YXpGtwl/04Oa+i6lh4PJkJwxcjIyAgavj5Bj49qZ54KqRMAAgJSxFAMhBwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQX9F3epqvP3R+KCrva27l1yfGfi0rf245Kxv7TmftC4IrftQ9/sVFke9ADdYt40c51+1wf8srtH4j8YbYjz1t7iL/ueAnV+yXX5pvgnX+f+c+9l+b88MZ2u+mlWzLtGNzgmW5R2n+AZj8w51aWW+phXP7LMlVc75+tXiHTMnT4BvvE+BiFX9ruP2tifmLm5V3qd6SylgxKr8fsajxfZNlP5SUDhjhV11HfkJiNi6/yZxY/p4tjMcWN2GE377t/uZBYp3UH/WIr7J6vV5+c8GbVpwx65NKSCihHLTINioRwP8NtT5/W/I3x38XdIP9WnPxUyrxLxjfPkkKkvHmOadFKbXZVR/PfzD1K2uJ31/L/r7Rgm/eLHofavv65F0RfRy4GIUJQ/4oSfBrlYvMK5/2y2dBu1VcXMi5FpXcJLm/1DXZB9QVU3+1MVx48Uaps/O2ou37Cgmj4KCM64+Yt/24LCKnTtN0QzDP8iKSaeKj1t938X5Fp+vnvWF+IWIcx8xt0bNIcnOCn/Oxuzr+NslMyHUSht3KrV8ijf07/8FpmvYljPxbhvoJQ9s/U41dEd9FwOUoSxi99pPe/oU1P2F4v3zmt4PljbH8AbWsl+bd3Im2e+iUHws3z3gti7YG8XST+pW05JOZvSTx9rgbZMLIPSiRKsbQ9+5vjq2rpnas7UlcJSI1DHd9SralbHPWYO7+Dm6yp0Z7JjMW6/ty6zR3z9agn2t5sfp4/oMZ25HO7Rlr7/yKWPq8KqlhBO/m03dFYhcBl6MsYXSic8T80qRo4GzC2DTf97kXtdZvk3c3PvM1KX4tE5ej+PqtK9aPbsUmvHqJH0xcr4dqOUWPX4kLTKpm4v5QY41ektKDotV5h24ZXWAvpc36o6dz69q1ib6dLeb8SuwwZ21SvSTetm9tS/bmRE+trnNOqNjGZZz3BbfrZQnDb9HN3+rjXfaD684vqmFs7xB5eNwol9w/pySM03dFbCcDl6V0HMbyvhy6pu26bv2xbHEZ2F3DmLy3/Tyj3D6N4DbG411R5tmqb2o55bIxdlWWP9w7Pv9Pr09FLCTS1Mcuu8u22JjjvdbJcnP802fr1OqVLJWoYfh7bj26/sq5BZz1VtIGjbU7oRuGruhkCZh18g9jsJPERrStXbh7T22LDMltmXZtjn/Eh65p+2EctPi5cbiDPaA3oTkJ32u0v2vCyNkhwdHSNmTHPlHWQ92gfbuChIHrUJowlkureVu7RfrShBE2df5dSOmbLnHHEzYricuOnzDm1Wptb728UQpbffcReXmKbJK+y+ysvNtscdWU/Vbq5oQJQ6vNhvfxGwclLPtP0zgM4s5+bX3VXLWGtd1lKr+TYy6q+bNb90rbDaOcXmlZMrZlyt+c4ICYbL4mNLWR0Q93uAParsss8v2dNYycHeLtRDcKqFVEMffY/UWQN0gYwD6nJ4zgOj1sFIrXC2x4uzzJZ4oThm390glDvTdXp/QvbmvdP3plT14qEvUYrWUMwpt9pmn7vptL9EWfJclIGLkHJae21HVh6pEVkKAPJpu6sSIFrA/lnEJZ2zKoIS6yOUHUFe8f2Zabtds83OHZ4c+taG+F2/95CSO+j73N3twhQdbzo0DiDCi5upAwgH2KEoZzqY3VMMy7PtqtupkwptSDWWua0UsyJUunYcKYRvuBxP0JI8ZbN/+6GLYj9pJXnjC0Lc1IGJFVdZ9R9oo/iMHtT9qZL4IU2KjFBvHsdpOWsS2Fm7NRw5DvlNzDvc5YRJPtnViUMLxZOiNqwsfzH7R/bNYwcneI+ukp5SBs3kdsCWZ7+q5I7CLgchTXMOwfImHIG7bI7bJRkDD2vutKEkZ+DcN9vm7CcLc0XGSiFTmphhEuoPSgyOnVBnUcBjmSxtlK7xFlpVIlbtNZky7/FNjclqlwc5zDJmsYXSfGlBYdbm9cSO7mliUMP8Gk/53/oFnURsIo3CGpDUk5KWFU2BXRidPvCuCvsidhmLdBsq3K6SXRruHarMqcmjDit6nrY9UTRnJLsxNGbGdvhTWZMIoOitcq62u5rNjcZdL2o6hzh+2lnHW8vt3Mo2iqXoiztmUq2JytGkZMekdqT6UGbEzpw++tpFcYCmeqPp7/YMk4DDmn6gkj9/4ltn+m03dF8LjWkwb81coThuy814gO1x01DKeJ29eAuAsWa6m8v4O+iVMWbJcXyy0Z1CtLvRpGdJ1KD0qy7yG1TWGmiLQK0XtM87mNrZXoYl8vu9saKrI2J1rD2JMwhq7ZOC/njY10EH2Dm+LMd4DyHtjcZ3LWG1v6vfaJjxoGLkx2wgA+U0kRGwDwDZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1FeSMF7vHg43x6d37+Hf9zcPh5uHw93vxGs/Ho+Hm4fD7dvHjpUEAAB/mYKE8efp9uFw8/zqPrpEhxvlKWUyEgYAAFchN2GYQoX5r3n8M03T9PI854bXOUCIMsbrnZgsTBjvb81WKAEAAH+t/BrGy7OTGN7/mJQw95vMFY41ZJAwAAC4YqUJ4/Z4uHm4f/n9dHs8uFWN9b/btw8SBgAAVy07YXw8Hg83x/u7OWFMH49HfWjny/M8AQkDAIArlp0wXu8eDjfPT49LwlhGYJj/7h/fmpvj08tbYzpK5oSx9R8JAwCAi1Q00tOM6LQJY/1HkDA8fJYEAIBrsvOzJMenRxIGAACIKfxOz4/MXpLl2bUTJEwYSzdK8nu6AADA3+m0hBGtYZAwAAC4aiQMAABQ32njMOglAQAAmlo1jJdpmsy3XJAwAAC4dudNGBn/kTAAALhAJyaMu+el0+Td/C6J8vPuOmoYAABcrsKEAQAAkIGEAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoL7chDH2bSO1/eg8P3TmIX/KUDd485UPpFZgc7qxb+dphi6yyLFvm643kymvb/tx3ZblgXmG3aD8v/JyZfHBXrNTCkPXJHeFWK1qtne/v1T377L9s38lYxu+ebK1/ShOC/eFNfZmdAcW7pnw9N483FvvCHe3qRv8KYcPwNXaVcNQLn7x62HqYrWdRsxM5Vy09ts8OXRN0w3u6syvnR9aLsuR1TVXXHnxtq/uhnUllDZrUi7Y+rNa4zA/4j3urmXQtp/cCIx927St1kSqB6btR2XLCvZPnlg80w949jz9463uwHnZ8uH5kci5Hd+By0sLzpwwYGxs4sYZEG6ymoaqHz4AMLIThtfEz61hPBHoL3SMfRu9dIeTdsNkbsR679rpXmqHzk6yxgk/YdgoEiwnmLPWtoUVnUE+0nWJGobXgHaDu1j57/MmDLsHkrtiWeq8uKzGX90/p1QLEjWMfKYNjTJbaw6KfVl0A1I7MP/MGf2HljMiWLvtOO6dLbH3aHqO1Q8fgKtVUMOwUUErABTXMJarcuIaKBtdZ8H+smRqWBblFyzChDFN4xg098G1dl3Xxg8xXjeK88dGDcN5OliFtuvW2ZwrYQydbDiUEnqkijH0vb3NlUkoa/+UrFzaudo8E09lAavrIsE5vQPFlqT3jLOLbDDwuhLdU9cuM5wqvT6xja56+ABgVtJLslzSRFeCc2Xc0Uvij99YJ/S6FJyGJd5LYi+syYQRb6WUZnvommZudcxrxr5r7co5W6cmjEgBXFSno7tlq6XdmTBE8Wi9+1ZL6HZvOV03TmtXsn92ijRzGff0OXvLKUDY/S7O8CFIGHk7MHfPBO+j1k8HpQlj3jP+Cqpb/AmHD8DVKhuHYfqdnUqB/GdeH3rjv2yapmkcx3B+q8G5sYz3ksg2IlHDiLRa3hV1vRbPTyyNWjcMnVZlWJ62F2x9w91sIfaYDCXKykVqGNkN7doN4DRofjnF/LmkNbfNXTfTzq1g/2TJPYXUli9a2TG7e15Dd5PDkS/2XDHntLvHMnZgwZ4JaxiTdyIG5Td1W+UgIpFSgl3irFr1wwcAVulIT6cRElevXb0kJe1itLsgVnlwmohYwvCa567TNkOZ/zrnteNjXd1kDcNZZNv3nXyJvdKv6+1tU2qttoT3s+EjY982bde1YsOWYv4wiDvdtTXK2z+7Lf0Wqdm4VX2nzZTTOLWmxgyeCXKsbKVtjBJHOWsHBqsjn/b2jDYOw53P2v7nJIyha/3PQykhKj4fdSUBoNyuhOHeSpt7rh29JPJVQYpw2mh5/Y33kkzmeunceW/WMJz6stwMZUnizjAoZzv9R1odw73QKzWM8yYM9QBEZpJTGtFGtKb2TzGnUCN6ZeQ6O/tBDrNx4kN4FoqI5OyP1gyOkHf60c2I7cCCM0etYTjPOBWGFLe3RQ7K8Gp8xSsJAOXKEsZ8PdXSxK6E4YxNG0fZJuTmkmU2Tm1f9jHHSs22EffihmxiTJFDvTprDY/TIqT6eSZ7de+6T6xhhOIJQ5tUOcJF+6eIHExg5hckAn8vBHFDO5+G9QOofsxw+i7WvsDyhFGwZ+IJY3IezB+H4S9QTJk6iaoePgAoShj2ahrtloi8KtaGZfSUBIUMf1CAuzrutVT5HIBMGG27tjNBKWW5qg+DHBzq9bj7DZ5TXI4ljHWjv3UNQ26Qs8XOoSnbP9mLXpo3fzzKOgBknS5d8RdHcy0D+Ceq2w2ihecdCSN/z2wmjMiRTp4A7obYSb3Zlxy+7SMKAK7shLFRdI4mjJ0NYXDPmTUOQ+QHt+Ab3M4581wvsksfTCc/5bFWGxrxjRbrLbDX2zLIJcTykuwlUYdu2OUkfXLC0I9w/v7xZq0vWazSaD/LoRysbvADiDpXW/rIKtfUSxhy2ek9ExmHkV4pdVu3XqO+In8ll7OaygaATLkJI1KJcO/A855JL8WIt0sx7fIxDTdSLLMV4yJkv4iojAQLMSM+0rfRS4Ix37jV9eITqxu9JDZh9LZsb7dve5+dtYaRUV3Sj1Rs/wQHM9UNJueVd/qs6xsuarDDRNNbtWtnJndg3p7Raxj+4KNQRsJIbvBy3uUePmoYAEqVjvQEasgIGACAvxoJAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH1FCeP9rbl5ONy+fZgHPh6Ph7vf5q8/T7cP/p83z695c3u9ezjcHJ/evYl+3988HG7kbMOZhK8CAABf65SEMf9583D/Mk3TNL08H25ESlgmfr6/fTjciP9sVnDmpseRj8ejeaGWVMwKpHIMAAD4AqfVMJZUcfv2sUQEkzbMU83jH1OHsCHgz9Ptw+H27WOdmylUmP+axz9y5q9zzlDLGCZkLC8BAADfQm7CWAKE/e/+0dYPgv9u3z6WXo+H+5cwl4QJQ8aRaZqmj/c/JjrMFRGzdC1kmDoHfSUAAHwfJTWMpS2XNYxpmsLqxTSZusXx6V3WOcT0asK4PR5uHu5ffj/dHvXsoix9SucPAADwFUoSxlyWyEoYYkyGGEsxd2f8DhPGx+PxcHO8v5sThjeA1J+tG2XEijEaAwCA7yI/YdhhldsJw3apHJ/e5+b/+dWUQNSEMU/z9LgkDBNQZI/M8enlrdELFeswDkZjAADwPWQnDLcU8fwajMwQVYo30+Qfn95/3zuFiof7l8hITzOi0yaM9R/phOHEEcoYAAB8B7kJQ3zcY44C3rgKv4ZxbG4fDjfHp0fT/N/9NmM/Nz9LsrwqL2HYpavDQQAAwJcoShi3R//TqtOkjsN4fZnzxPH+7mizhVP88EZ6TtO0FjlK20ssOgAACINJREFUekmWKZ9fp3BIKQAA+CoFn1Y1bXzWZ0m87+g0VQr7zRkZCSOjhrHM1i56jjKMxgAA4Ktlj8N4ffmtfOPWNOUlDNn2V0sYymdbnG/RAAAAX2Xnd3pGh3naz3Q4CWNp+OdhmLnjMDZ6SWT/iBD50g4AAPCZTvzW8GnKqGEsE/idF/k1jBcx/ZwwzEANbVwnX8AFAMCXO3/CWPoywvb+3e/1yE0YqXgx2/pFVgAAcF7nThhzf4fb0ouPljgDJvyEcWe/GFR+hZc/ujO1qnx4FQCAr1GUMAAAALKQMAAAQH0kDAAAUB8JAwAA1EfCAAAA9ZEwAABAfSQMAABQX27C+BcAAODff//999/KCeN/AADg6pEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUN9XJYz/fv7TNM2PX+fdOgAA8DW+ImH8+tE0//z8+YOEAQDApfr8hPHfz39+/PrfnDNIGAAAXKavG4dBwgAA4HKRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9X1Bwvj1o3GRMwAAuDR8pycAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKC+L0gY//38R/7u2T8///uE7QQAAJ/paxIGqQIAgMtGwgAAAPWRMAAAQH1fPQ6DrAEAwCX64s+S/PpByAAA4AJ99adVf/1omh+/zrNtAADgq3xtwvjv5z8EDAAALtDnJwyGYQAAcPm+upcEAABcIhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+r4qYcy/f7bxs6rOj6Rl/UyaMttfP4p+Zk1dsay19VeZ34wFAFyxr0gYv340zT8/f/7ISRgFP76qzXZ+7L9lZlsLVFcse23nRZgVlv8GAODqfMmvt//49b+55a6YMNTZ/vohW/mNRl+dQ8Ha/u+/n/940YSIAQC4Vl83DqNywtBmK/9tui+2+y7UFctJGN40XuAAAOCafPeEUTQKw5/tXEVY5rL864wJQ0k0JAwAwJX61gnDnzwnZPg1DJlNzp0wZCb65+cvahgAgOv11ySM3OmDOsL6mszBl6ckDO8lBAwAwLX6WxJGxidBtNnKykfuAqskjB2JBACAC/IFCWP9goqNL44oG4YRmW3BF1Soc8heW3cOfIoEAHDd+E5PAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9dVPGAAAAP/WTRgAAAD5SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6iNhAACA+kgYAACgPhIGAACoj4QBAADqI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6itKGO9vzc3D4fbtwzzw8Xg83P02f/15un3w/7x5fs2b2+vdw+Hm+PTuTfT7/ubhcCNnq/h4PB7cFQMAAF/qlIQx/3nzcP8yTdM0vTwfbkRKWCZ+vr99ONyI/2xWcOamx5ElOtwkkwoJAwCAb+e0GsaSKm7fPpaIYNKGeap5/GPqEDYi/Hm6fTjcvn2sczOFCvNf8/hHzvx1DhCijPF6JyYLE8YSfVKhBAAAnFNuwlgChP3v/nEpYCj/3b59mBBw/xLmkjBhyDgyTdP08f7HpIS5ImKWbkIGCQMAgO+tpIYR6YwIqhfTZOoWx6d3WecQ06sJ4/Z4uHm4f/n9dHvUs4sbX0gYAAB8VyUJY27XsxKGGJMhxlLMseB3mDA+Ho+Hm+P93ZwwvAGk/mzvX0gYAAB8c/kJw4zrzEgYtkvl+PQ+p4HnV5MD1IQxT/P0uCQME1Bkj8zx6eWtMR0lS9bZ+I+EAQDAV8lOGG4p4vk1GJkhqhRvZuTm8en9971TqHi4f4mM9DQjOm3CWP8RJAx93fgsCQAA30VuwhAf95ijgDeuwq9hHJvbh8PN8enRVCPufpuxn5ufJVleRcIAAOCvVZQwbo/+p1WnSR2H8foy54nj/d3RZgun+OGN9JymaS1ybPWSLM+unSBhwliWmPyeLgAAcDYFn1Y1bXzWZ0m87+g0VQr7zRkZCSNawyBhAADw3WWPw3h9+a1849Y05SUM+ekPEgYAABdv53d6Rod5msGef5yE4Xx8NHccBr0kAAD8tU781vBpyqhhLBPYr6+IzS1aw3gR05MwAAD4C5w/YUQb+3f/syGFCSPjPxIGAABf49wJY+7vcFt68dES5+fa/YRxZ78Y1PkKrxzUMAAA+FJFCQMAACALCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1EfCAAAA9eUmjH8BAAD+/ffff/+tnDD+BwAArh4JAwAA1EfCAAAA9ZEwAABAfSQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPV9ScL47+c/zeLHr7NvIgAA+HSfnzD++/lP88/P/4J/AwCAy/HpCeO/n//IwsWvH0QMAAAuz6cnjF8/nK4RL3AAAICL8Pm9JDJizAMySBgAAFyarxjpuQ70/OfnL2oYAABcoK/+tOqvHwQMAAAuz5cmDG9MBgAAuBRfkDB+/WhsJwmfIgEA4CJ9dS8JAAC4RCQMAABQHwkDAADUR8IAAAD1kTAAAEB9JAwAAFAfCQMAANRHwgAAAPWRMAAAQH0kDAAAUB8JAwAA1Fc/YQAAAPxbN2EAAADkI2EAAID6SBgAAKA+EgYAAKiPhAEAAOojYQAAgPpIGAAAoD4SBgAAqI+EAQAA6vt/kyjBEgCGTF4AAAAASUVORK5CYII=" alt="" />
-------------------------------------
排序取中间数即可
AC代码:
import java.util.Arrays;
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int times=sc.nextInt();
while(times-->0){
int n=sc.nextInt();
int x[]=new int[n];
for(int i=0;i<x.length;i++) x[i]=sc.nextInt();
Arrays.sort(x);
System.out.println(x[x.length/2]);
}
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=124
NYOJ题目124中位数的更多相关文章
- LeetCode题目----求中位数---标签:Array
题目难度---困难 题目要求: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 思路:第一眼 ...
- nyoj 题目2 括号配对问题
描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对. 输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...
- NYOJ题目27水池数目
--------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...
- NYOJ题目20吝啬的国度
-----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...
- NYOJ题目28大数阶乘
-------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...
- NYOJ题目198数数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF
- NYOJ题目170网络的可靠性
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy
- NYOJ题目168房间安排
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAOTCAIAAADGwNmiAAAgAElEQVR4nOy9PY7cyLPufTchXwsZu9
- NYOJ题目125盗梦空间
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAANLCAIAAAA4rUfgAAAgAElEQVR4nOydq7LdyrKm+yXM/SDG4y
随机推荐
- DAY1 linux 50条命令
1. tar压缩,解压缩 tar -cvf *** (压缩) tar -xvf *** (解压缩) [root@bogon ~]# tar cvf test.tar test/ test/ test ...
- HDU 1085 Holding Bin-Laden Captive!(DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1085 解题报告:有1,2,5三种面值的硬币,这三种硬币的数量分别是num_1,num_2,num_5, ...
- HNU 12885 Bad Signal(模拟)
题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12885&courseid=274 解题报告:一共有n个 ...
- php中mysql与mysqli的区别
两个函数都是用来处理DB 的.首先, mysqli 连接是永久连接,而mysql是非永久连接. mysql连接每当第二次使用的时候,都会重新打开一个新的进程,而mysqli则只使用同一个进程,这样可以 ...
- Sqli-LABS通关笔录-18-审计SQL注入2-HTTP头注入
在此关卡我学习到了 1.只要跟数据库交互的多观察几遍.特别是对于http头这种类型的注入方式. 2. <?php //including the Mysql connect parameter ...
- gulp学习笔记1-定义
1.gulp是前端开发过程中对代码进行构建的自动化工具,可以通过它提供的各种插件实现如:预编译(sass&less).压缩.合并.图片精灵等前端的重复操作 2.基于nodeJS,以js编写插件 ...
- 怎样将runlmbench 获取的数值传给上层app
前面那个随笔 , 已经成功将runlmbench 移植到了Android , 并成功的运行. 今天就写一下将runlmbench 获取的那些性能值传给上层 App 进行人机交互. 一开始 , 我是想直 ...
- 数据流图DFD画法
数据流图(DFD- Data Flow Diagram)让系统分析者弄清楚"做什么"的问题,其重要性就不言而喻了.那么我们怎么画数据流图呢?数据流图与系统流程图又有什么区别呢? 步 ...
- js之DOM和事件
DOM 查找 直接查找 var obj = document.getElementById('i1') 间接查找 文件内容操作: innerText 仅文本 innerHTML 全内容 value i ...
- 10个php笔试题
Q1 第一个问题关于弱类型 $str1 = 'yabadabadoo'; $str2 = 'yaba'; if (strpos($str1,$str2)) { echo "/"&q ...