【BZOJ】3757: 苹果树
http://www.lydsy.com/JudgeOnline/problem.php?id=3757
题意:n个节点的树,每个点有一种颜色。现有m种询问,每次询问x y a b表示x到y的路径上颜色的种数且a颜色看成b颜色。(n<=50000, m<=100000)
dfs序序列分块战术核导弹= =:
#include <bits/stdc++.h>
using namespace std;
const int N=50005, M=100005;
inline int getint() { int x=0; char c=getchar(); while(c<'0'||c>'9') c=getchar(); while(c>='0'&&c<='9') (x*=10)+=c-'0', c=getchar(); return x; }
int ihead[N], cnt, blo[N], f[N][16], FF[N], LL[N], tot, dep[N], cal[N], pos[N<<1], col[N], st[N], n, m, Ans[M], ans;
struct E { int next, to; }e[N<<1];
struct Q { int x, y, lca, a, b, id; }q[M];
bool cmp(const Q &a, const Q &b) { return blo[a.x]==blo[b.x]?a.y<b.y:blo[a.x]<blo[b.x]; }
void add(int x, int y) { e[++cnt]=(E){ihead[x], y}; ihead[x]=cnt; e[++cnt]=(E){ihead[y], x}; ihead[y]=cnt; }
void dfs(int x) {
pos[FF[x]=++tot]=x;
for(int i=1; i<=15; ++i) f[x][i]=f[f[x][i-1]][i-1];
for(int i=ihead[x]; i; i=e[i].next) if(e[i].to!=f[x][0])
dep[e[i].to]=dep[x]+1, f[e[i].to][0]=x, dfs(e[i].to);
pos[LL[x]=++tot]=x;
}
int LCA(int x, int y) {
if(dep[x]<dep[y]) swap(x, y);
int d=dep[x]-dep[y];
for(int i=15; i>=0; --i) if((d>>i)&1) x=f[x][i]; if(x==y) return x;
for(int i=15; i>=0; --i) if(f[x][i]!=f[y][i]) x=f[x][i], y=f[y][i];
return f[x][0];
}
void update(int x) {
if(st[x]) { if(!(--cal[col[x]])) --ans; }
else { if(!(cal[col[x]]++)) ++ans; }
st[x]=!st[x];
}
bool check(int a, int b) { return cal[a] && cal[b] && a!=b; } //a!=b
void pre() {
dfs((n+1)>>1);
for(int i=1; i<=m; ++i) {
q[i].x=getint(); q[i].y=getint(); q[i].a=getint(); q[i].b=getint(); q[i].id=i;
if(FF[q[i].x]>FF[q[i].y]) swap(q[i].x, q[i].y);
int lca=LCA(q[i].x, q[i].y);
q[i].y=FF[q[i].y];
if(lca==q[i].x) q[i].x=FF[q[i].x], q[i].lca=0;
else q[i].x=LL[q[i].x], q[i].lca=lca;
}
int nn=n<<1, sq=sqrt(nn+0.5);
for(int i=1; i<=nn; ++i) blo[i]=(i-1)/sq;
sort(q+1, q+1+m, cmp);
}
void work() {
int l=1, r=0, nl, nr;
for(int i=1; i<=m; ++i) {
nl=q[i].x; nr=q[i].y;
while(l<nl) update(pos[l++]);
while(l>nl) update(pos[--l]);
while(r<nr) update(pos[++r]);
while(r>nr) update(pos[r--]);
if(q[i].lca) update(q[i].lca);
Ans[q[i].id]=ans-check(q[i].a, q[i].b);
if(q[i].lca) update(q[i].lca);
}
for(int i=1; i<=m; ++i) printf("%d\n", Ans[i]);
}
int main() {
n=getint(); m=getint();
for(int i=1; i<=n; ++i) col[i]=getint();
for(int i=1; i<=n; ++i) {
int x, y; x=getint(); y=getint();
if(!x || !y) continue;
add(x, y);
}
pre();
work();
return 0;
}
无脑dfs序/分块树 树上分块= =
#include <bits/stdc++.h>
using namespace std;
const int N=50005, M=100005;
int ihead[N], cnt, id[N], blo[N], f[N][16], dep[N], cal[N], col[N], st[N], n, m, Ans[M], ans, ID, n_blo, n_bl, sta[N], top;
struct E { int next, to; }e[N<<1];
struct Q { int x, y, a, b, id; }q[M];
bool cmp(const Q &a, const Q &b) { return blo[a.x]==blo[b.x]?id[a.y]<id[b.y]:blo[a.x]<blo[b.x]; }
void add(int x, int y) { e[++cnt]=(E){ihead[x], y}; ihead[x]=cnt; e[++cnt]=(E){ihead[y], x}; ihead[y]=cnt; }
void dfs(int x) {
id[x]=++ID;
int last=top;
for(int i=1; i<=15; ++i) f[x][i]=f[f[x][i-1]][i-1];
for(int i=ihead[x]; i; i=e[i].next) if(e[i].to!=f[x][0]) {
dep[e[i].to]=dep[x]+1; f[e[i].to][0]=x;
dfs(e[i].to);
if(top-last>=n_blo) { ++n_bl; while(top!=last) blo[sta[top--]]=n_bl; }
}
sta[++top]=x;
}
int LCA(int x, int y) {
if(dep[x]<dep[y]) swap(x, y);
int d=dep[x]-dep[y];
for(int i=15; i>=0; --i) if((d>>i)&1) x=f[x][i]; if(x==y) return x;
for(int i=15; i>=0; --i) if(f[x][i]!=f[y][i]) x=f[x][i], y=f[y][i];
return f[x][0];
}
void update(int x) {
if(st[x]) { if(!(--cal[col[x]])) --ans; }
else { if(!cal[col[x]]) ++ans; ++cal[col[x]]; }
st[x]=!st[x];
}
void move(int x, int y) {
while(x!=y)
if(dep[x]>dep[y]) update(x), x=f[x][0];
else update(y), y=f[y][0];
}
bool check(int a, int b) { return cal[a] && cal[b] && a!=b; } //a!=b
void pre() {
n_blo=sqrt(n+0.5);
dfs(1);
while(top) blo[sta[top--]]=n_bl;
for(int i=1; i<=m; ++i) { scanf("%d%d%d%d", &q[i].x, &q[i].y, &q[i].a, &q[i].b), q[i].id=i; if(id[q[i].x]>id[q[i].y]) swap(q[i].x, q[i].y); }
sort(q+1, q+1+m, cmp);
q[0].x=q[0].y=1;
}
void work() {
for(int i=1; i<=m; ++i) {
move(q[i-1].x, q[i].x); move(q[i-1].y, q[i].y);
int lca=LCA(q[i].x, q[i].y);
update(lca);
Ans[q[i].id]=ans;
if(check(q[i].a, q[i].b)) --Ans[q[i].id];
update(lca);
}
for(int i=1; i<=m; ++i) printf("%d\n", Ans[i]);
}
int main() {
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i) scanf("%d", &col[i]);
for(int i=1; i<=n; ++i) {
int x, y; scanf("%d%d", &x, &y);
if(!x || !y) continue;
add(x, y);
}
pre();
work();
return 0;
}
upd:第二种写法:dfs序直接在序列中莫队= =
将树上的点转化为括号序列:每一个点的括号中包含了所有子树的节点:
可以得到:
(FF表示第一个括号的位置,LL表示第二个括号的位置)
当lca(x, y)!=x && !=y时且FF[x]<FF[y]时
- 区间[LL[x], FF[y]]出现奇数个数的节点就是x到y路径上的节点(但不包括lca):
- 5由于LL[x]>FF[祖先],所以[LL[x], FF[y]]中必有lca到x路径上的节点。而在这个区间内,lca的其它的非y的子树都会成偶数(FF[a]>FF[x] && LL[a]<FF[y] 或者 LL[a]<FF[x] 或者 FF[a]>FF[y])。
- 而这个区间由于只是到FF[y],因此FF[y]的祖先都是奇数次(因为y还没遍历完),所以区间内必有lca到y的路径上的节点(其中路径上的子树由于上边的理由同理),因此最终还剩下个lca,特判一下即可。
当lca(x, y)==x && FF[x]<FF[y],区间[FF[x], FF[y]]表示出现奇数个数的节点就是x到y路径上的节点。和上面差不多的道理= =
所以搞搞就行辣= =速度超快= =
第一种写法:
树上分块= =
首先一开始就强行yy到了dfs序然后分块,后来不知什么鬼我自己不相信这样做能过这题(因为我一开始理解错啦= =假如固定了l,那么r走过的节点数是均摊O(n)的啊= =最多为2n次(进来又出去))
发现题解就是我一开始想的那样= =
可是我忽略了一个问题有木有!在更新lca的时候可能会出问题!自己画图可以得知!反正如果特判的话很难写的样子?
听说vfk神犇有题解我就去膜拜了下= =跪烂
首先设$S(u, v)$表示$u$到$v$路径上的节点集合。令$+$操作表示元素的模2加(即出现次数的模2加法,即异或= =,就是出现两次的就去掉)
容易得到$S(u, v) = S(root, u) + S(root, v) + lca(u, v)$
lca就是最麻烦的,vfk给出了一种巧妙的解法:
设$T(u, v) = S(root, u) + S(root, v)$
则设$u'$表示$u$要到达的目的地:
$$T(u, v) + T(u', v) = S(u, root) + S(u', root) + S(v, root) + S(v, root)$$
即
$$T(u', v) = T(u, u') + T(u, v)$$
那么我们要从$T(u, v)$转移到$T(u', v)$只需要走一次$T(u, u')$上的点就行辣!(注意踢掉lca)
而不选lca可以直接用向上爬的方法做= =很简单哒= =
然后计数颜色就开个计数器就行辣= =
然后就没辣= =
【BZOJ】3757: 苹果树的更多相关文章
- BZOJ 3757: 苹果树
3757: 苹果树 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1726 Solved: 550[Submit][Status][Discuss] ...
- bzoj 3757 苹果树(树上莫队算法)
[题意] 有若干个询问,询问路径u,v上的颜色总数,另外有要求a,b,意为将a颜色看作b颜色. [思路] vfk真是神系列233. Quote: 用S(v, u)代表 v到u的路径上的结点的集合. 用 ...
- BZOJ.3757.苹果树(树上莫队)
题面链接 /* 代码正确性不保证..(不过交了SPOJ没WA T了最后一个点) 在DFS序做莫队 当一个点不是另一个点的LCA时,需要加上它们LCA的贡献 */ #include <cmath& ...
- BZOJ 3757 苹果树 ——莫队算法
挺好的一道题目,怎么就没有版权了呢?大数据拍过了,精神AC.... 发现几种颜色这性质比较垃圾,不可加,莫队硬上. %了一发popoqqq大神的博客, 看了一波VFK关于糖果公园的博客, 又找了wjm ...
- bzoj 3757 树上莫队
感谢以下文章作者: http://blog.csdn.net/kuribohg/article/details/41458639 http://vfleaking.blog.163.com/blog/ ...
- BZOJ - 3757 树上莫队解决离线路径问题 & 学习心得
题意:给你一棵树,求u,v最短路径的XXX(本题是统计权值种类) 今天课上摸鱼学了一种有意思的处理路径方式(其实是链式块状树翻车了看别的),据说实际运行跑的比XX记者还快 大概就是像序列莫队那样 首先 ...
- 【BZOJ】【3757】苹果树
树分块 orz HZWER http://hzwer.com/5259.html 不知为何我原本写的倍增求LCA给WA了……学习了HZWER的倍增新姿势- 树上分块的转移看vfk博客的讲解吧……(其实 ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ-3757】苹果树 块状树 + 树上莫队
3757: 苹果树 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1305 Solved: 503[Submit][Status][Discuss] ...
随机推荐
- Python 小游戏 Bunny
最近在学习Python,所以上网找了一个小程序练练手. 关于这款名为[Bunny]的小游戏,详细请看下面的链接: http://www.oschina.net/translate/beginning- ...
- Redis处理文件日志并发(2)
多线程操作同一个文件时会出现并发问题.解决的一个办法就是给文件加锁(lock),但是这样的话,一个线程操作文件时,其它的都得等待,这样的话性能非常差.另外一个解决方案,就是先将数据放在队列中,然后开启 ...
- ListView优化中ViewHolder要不要定义为static静态内部类?
给学生讲课的时候,发现存在这个问题,下来百度了下,发现很纠结,涉及到了内部类对外部类的引用,静态类的生命周期等java知识,现总结如下: static class ViewHolder { //定义l ...
- python多线程之Event(事件)
#!/usr/bin/env python # -*- coding: utf-8 -*- import time from threading import Thread, Event import ...
- wp8 入门到精通 Utilities类 本地存储+异步
public class CCSetting { public async static void AddOrUpdateValue<T>(string key, T value) { t ...
- 提高WPF程序性能的几条建议
这篇博客将介绍一些提高WPF程序的建议(水平有限,如果建议有误,请指正.) 1. 加快WPF程序的启动速度: (1).减少需要显示的元素数量,去除不需要或者冗余的XAML元素代码. (2).使用UI虚 ...
- gnuplot安装问题(set terminal "unknown")
今天在系统同上要装个gnuplot,原来用的都是拷好的虚拟机.这也是第一次装.本来以为分分钟的事,却不料遇到不少麻烦.记录一下,供大家参考 一,快速开始安装 ubuntu下那自然是: sudo apt ...
- Linux内核system_call中断处理过程
“平安的祝福 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ” men ...
- SecureCRT中文显示乱码
环境:SecureCRT登陆REDHAT5.3 LINUX系统 问题:vi编辑器编辑文件时文件中的内容中文显示乱码,但是直接使用linux系统terminal打开此文件时中文显示正常,确诊问题出现在客 ...
- IIS:连接数、并发连接数
IIS:连接数.并发连接数.最大并发工作线程数.应用程序池的队列长度.应用程序池的最大工作进程数详解 iis性能指标的各种概念:连接数.并发连接数.最大并发工作线程数.应用程序池的队列长度.应用程序池 ...