Some Simple Models of Neurons
Linear neuron:
\[y=b+\sum\limits_i{x_i w_i}\]
Binary threshold neuron:
\[z = \sum\limits_i{x_i w_i}\]
\[y=\left\{\begin{aligned} 1,~~~~~~~z\gt \theta \\ 0,otherwise\end{aligned}\right.\]
也可以写作:
\[z = \sum\limits_i{x_i w_i}\]
\[y=\left\{\begin{aligned} 1,~~~~~~~z\gt 0 \\ 0, otherwise\end{aligned}\right.\]
Rectified linear neuron:
\[z=b+\sum\limits_i{x_i w_i}\]
\[y=\left\{\begin{aligned} 1,~~~~~~~z\gt 0 \\ 0, otherwise\end{aligned}\right.\]
Sigmoid neuron:
\[z=b+\sum\limits_i{x_i w_i}\]
\[y=\frac{1}{1+e^{-z}}\]
Stochastic binary neuron:
we treat the output of the logistic as the probability of producing \(s=1\).
\[z = \sum\limits_i{x_i w_i}\]
\[P(s=1)=\frac{1}{1+e^{-z}}\]
Note:
- \(x\): neuron input.
- \(w\): input weight matrix.
- \(b\): bias term.
- \(y\): neuron output .
Some Simple Models of Neurons的更多相关文章
- 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV
之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...
- (转) Summary of NIPS 2016
转自:http://blog.evjang.com/2017/01/nips2016.html Eric Jang Technology, A.I., Careers ...
- 提高神经网络的学习方式Improving the way neural networks learn
When a golf player is first learning to play golf, they usually spend most of their time developing ...
- The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...
- 脉冲神经网络及有监督学习算法Tempotron
接下来一段时间开启脉冲神经网络模型的探索之旅.脉冲神经网络有更强的生物学基础,尽可能地模拟生物神经元之间的连接和通信方式.其潜在能力较强,值得踏进一步探索. 构建脉冲神经网络模型,至少需要考虑三点:1 ...
- Evolutionary approaches towards AI: past, present, and future
Evolutionary approaches towards AI: past, present, and future 2019-10-06 07:28:13 This blog is from: ...
- Bayesian machine learning
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...
- EF 5 最佳实践白皮书
Performance Considerations for Entity Framework 5 By David Obando, Eric Dettinger and others Publish ...
- 手势估计- Hand Pose Estimation
http://blog.csdn.net/myarrow/article/details/51933651 1. 目前进展 1.1 相关资料 1)HANDS CVPR 2016 2 ...
随机推荐
- bootstrap-datepicker带中文的js文件
) { $(".datepicker").datepicker({ language: "zh-CN", autoclose: true,//选中之后自动隐藏日 ...
- jQuery学习笔记(四):attr()与prop()的区别
这一节针对attr()与prop()之间的区别进行学习. 先看看官方文档是如何解释两者之间功能差异的: attr() Get the value of an attribute for the fir ...
- 枚举型Enum和结构型Stuct
枚举型实质就是使用符号来表示的一组相互关联的数据. Season currentSeason,nextSeason; currentSeason = Season.Spring; nextSeason ...
- 1103简单SQL 行转列思路
转自http://www.cnblogs.com/lhj588/p/3315876.html -- 经典行列转化DROP TABLE IF EXISTS TabName;CREATE TABLE Ta ...
- 1020关于mysql一个简单语句的执行流程
MySQL的语句执行顺序 转自http://www.cnblogs.com/rollenholt/p/3776923.html MySQL的语句一共分为11步,如下图所标注的那样,最先执行的总是FRO ...
- MVC 理解小谈
1. 如何理解MVC MVC 是一种经典的设计模式,全名为 Model-View-Controller,即 模型-视图-控制器. 其中,模型 是用于封装数据的载体,其本质是一个普通的 Java Bea ...
- easyui-datagrid 的loader属性用法
API介绍比较简略: 定义如何从远程服务器加载数据.返回false可以放弃本次请求动作.该函数接受以下参数:param:参数对象传递给远程服务器.success(data):当检索数据成功的时候会调用 ...
- SpringTest框架JUnit单元测试用例获取ApplicationContext实例的方法
步骤 1.继承AbstractJUnit4SpringContextTests 2.引入ApplicationContext 示例代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
- 概率 高消light oj 1151
t个样例 n个楼梯或蛇; a b 刚好走到a会到b; 问走到100期望; dp[i] i到100的期望 这一点没奇怪的东西 dp[i]=1/6(dp[i+1]+dp[i+2]..+6); 有 ...
- Android Studio开发调试使用
Android Studio调试其实也非常方便,一般问题直接通过AS的DDMS的Logcat就可以搞定.AS支持类似Eclipse的DDMS的所有功能.这里要说的是疑难问题的调试方式,即断点调试. 首 ...